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ABSTRACT
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Projection filtering has been used for many years in seismic processing as a tool to

extract a signal out of noisy data. The effectiveness of projection filtering reaches a

limit when seismic events are affected by static shifts. Such shifts degrade the lateral

coherency of the data, which is the strongest assumption made by projection filtering.

We propose an algorithm to estimate projection filters and static shifts simultaneously

in order to perform noise attenuation in the presence of static shifts in the data. We

then show results on synthetic and real data to demonstrate the denoising capabilities

of our algorithm.
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INTRODUCTION

Random noise attenuation has been a subject of inter-
est in seismic processing for many years. We now have a
wide variety of tools to perform such a task. From predic-
tion and projection filtering (Canales 1984; Soubaras 1995)
to coherency enhancement (Gulunay 2007; Traonmilin and
Herrmann 2008), we can efficiently address many situations
where random noise contaminates data. These methods rely
on the hypothesis that the signal is spatially coherent in or-
der to estimate the signal. A signal is coherent if it is the sum
of elementary coherent events. Depending on the denoising
method, these elementary events can be defined differently.
For prediction and projection filtering, we suppose that the
signal is a sum of sparse events in the wavenumber (k) domain
(seismic events are predictable in the space (x) direction). In
the case of denoising with Radon transform (Hampson 1987;
Gulunay 1990; Herrmann et al. 2000), we suppose that the
signal is a sum of elementary linear or parabolic events.
However, this coherency assumption is not met when static
shifts are present in the data. This problem arises in several sit-
uations. In land data, static shifts caused by near-surface prop-
agation effects harm the lateral coherency of seismic events.

The structural dip generates static shifts between traces of a
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midpoint gather for wide-azimuth data unless traces are sorted
in increasing azimuth as NMO velocities needed for dipping
data are azimuth-dependent. This factor as well as physical
azimuthal anisotropy, which manifests itself as statics, may
lead to a perturbed velocity analysis and more generally to
difficult prestack processing.

If the seismic data have static shifts and are contaminated
by noise, we generally face the following problem: on the one
hand, if we cannot correct for these shifts, we cannot use
conventional noise attenuation techniques that rely on lateral
coherency without harming the data. On the other hand, if
we cannot attenuate noise, it will be difficult to estimate the
shifts. Usual workarounds lead to tedious workflows of de-
noising and picking iterations (surface-consistent refraction
or reflection statics picking and calculation, velocity picking,
etc). The objective of this paper is to show that it is possible
to break this vicious circle and perform a denoising technique
that will not harm the static shifts present in the data. We thus
remove the need for denoising algorithms requiring a data set
with corrected static shifts.

In this paper, we propose an algorithm to attenuate ran-
dom noise when seismic events are affected by static shifts.
We begin by describing a variant of 2D projection filtering
that simultaneously estimates static shifts. We then show on
synthetic and real data that it attenuates random noise when
seismic events are affected by static shifts.
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THEORY
Definition of the problem

We consider in this paper a generalization of the conven-
tional data model used to apply 2D projection filtering. Our
2D seismic data model is a laterally predictable signal where
each trace is shifted and contaminated by noise. We assume
that the noise is additive, white and random. We can write it
as:

d(t, x) = s(t — t,, x) + n(t, x), (1)

where ¢ is the time, x is a spatial dimension, d is the recorded
data, s is the spatially predictable signal and # is the noise.
The ¢, are the static shifts that depend on the spatial di-
mension x. We suppose in this paper that the shifts are ran-
dom with zero mean. Our objective is to recover the signal
s(t — ty, x).

In the temporal Fourier domain, equation (1) becomes:

d(fox) = T(f,x)s(fox) +n(f,x),  T(f x)=e? " (2)

! (which is equivalent

If we multiply this equation by T(f, x)~
to removing the shifts in the data), we have the usual data
model used for projection filtering: a predictable signal with
additive random noise. We could then remove the noise by
calculating a prediction error filter A and then deriving the
corresponding projection error filter P (Soubaras 19935). Thus
the only information missing to perform a statics-preserving
projection filtering (estimation and application) is knowledge
of the static shifts present in the data. We would then be
able to denoise the data by removing the shifts, calculating
and applying the projection filter and finally re-applying the
shifts. We consequently propose to solve for the static shifts
and projection filters at the same time.

In what follows, we use notations A, P and T for the lin-
ear operations of prediction filtering, projection filtering and
shifting a data set (which we will write as d) in the f-x domain
respectively.

We can then write the problem of the least-squares joint
estimation of A and T as:

[|AT'd]||*. (3)

find argmin, ;

If we can calculate A and T, we will be able to derive a projec-
tion error filter P from A (Soubaras 1995) and use it to obtain
an estimate of the noise contaminating the data by using this

equation:

n=TPT 'd. (4)
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This operation corresponds to a three-step process: removal
of the static shifts, projection filtering and application of the
static shifts. This noise estimation equation shows that we can
add a constant to a solution for the static shifts and obtain
the same results. We take the first trace as the reference (shift
is zero) to make shift values.

The relation between the unknown and known parame-
ters in equation (3) is not linear, so we cannot hope to solve
this problem with a simple linear least-squares technique.
We therefore need to use a non-linear method to solve this

problem.

An iterative algorithm

The most straightforward way to perform non-linear mini-
mization is to use an iterative scheme where we linearize the
problem locally. From estimates of T and P at an iteration i
(we call these estimates T; and P;), we need to calculate T},
and P, that decrease the quantity given in equation (3). Let
us assume that we have an estimate of the shifts T;. Fixing T;
in the minimization will allow us to obtain an estimate of the

prediction error filter A;,;:
. . 1 2
find arg ming,, HAiH]T dH . (5)

This can be done directly using normal equations. We then
derive the projection error filter P;,; corresponding to A;4

and use it to solve the following problem for T}, :

find  arg ming, &
T (6)
P'+1];+1dH ’

with & = ‘

where ¢; is the objective function at step i. With real data, we
have little guarantee that solving this system directly will give
correct shifts because coherent noise can bias the solution.
There is also a possibility that we may converge to a local
minimum. Instead, we use a gradient descent update for the
vector of time-shifts ¢, defining T,,; as:

tiv1 =1t — Mx’j,@i, (7)

where V¢, is the gradient (or conjugate gradient) direction
and u; is the step size. The gradient takes a simple form:

Ve = 2Re[(P T ') (P11 (V, T )d))]. (8)

The differentiation of T is done by differentiating the mul-
tipliers T(f, x) from equation (2). With this update method,
we can control the values taken by ¢;,; and we are guaranteed
that our objective function will decrease.
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Equations (5) and (7) define our iterative minimization al-
gorithm. This algorithm is similar to the primary estimation
by sparse inversion (Groenestijn and Verschuur 2009) where
successive linear least-squares inversion and gradient step up-
date are performed. We do not need to enforce sparsity but
we need to make sure that we do not converge to a local min-
imum. We provide a method to avoid this in the next chapter.
We also define the initialization value of T, and the step size

u; to complete the description of this algorithm.

Initialization, step size and local minima

We need to set the algorithm parameters to ensure conver-
gence towards the global minimum of the objective function
&;. We need to define how we initialize the data and how we
define the step size along iterations. We must also make sure
that the algorithm is not trapped in any local minimum as the
problem is not linear.

We first make an observation on the behaviour of the prob-
lem with respect to frequency. We will then explain how it
relates to the choice of the parameters for our algorithm. We
write the recorded data (defined in equation (2)) as a pertur-
bation of the data without shifts:

d(f,x) = T(f, x)s(f. x) + n(f, x)
=s(f,x)+s(f,x)(explj2n ft.] — 1)+ n(f, x). 9)

The second term in equation (9) is additional noise induced by
the static shifts when compared to predictable data contami-
nated with random noise. We want to see how the energy of
this term behaves with respect to the amplitude of the static
shifts. If we assume that the shifts have a Gaussian distribu-
tion with zero mean and standard deviation ¢,,/2, we can show

that (see Appendix for details):
Eds(f, x)(explj2n ft.] = 1)I* < 7’4, fPEdls(f, %), (10)

where E.|-|> is the energy along the x direction. Thus static
shifts cause less deviation from the ideal model at lower fre-
quencies, giving better estimates of projection filters.

Specifically, if statics are low enough or frequencies are low

enough:
1
Ly < ﬂ—f (11)
we obtain:
Exls(f, x)(exp[ 72 ft.] — 1) < Exls(f, x)I*. (12)

This means that if condition (11) holds then the term added
by the statics is less energetic than the signal without shifts, a
well-known phenomenon.

These observations compel us to start solving the low fre-
quencies first and then adding frequencies as the number of
iterations increases. This brings two advantages. At low fre-
quencies, we can initialize the statics estimate with T = Iden-
tity (initial shifts set to zero) because the estimation of the
projection filter will be closer to the solution compared to
an estimation taking all frequencies. Starting with low fre-
quencies also avoids local minima, as aliasing caused by the
statics is the reason for these local minima (it is similar to cy-
cle skipping). With this method, we can estimate shifts having
values as large as half of the inverse of the minimum fre-
quency present in the data. The required number of iterations
is typically under 50.

We can use a line search or a heuristic method to determine
the step size. The problem that arises for the line search is that
we have to apply the projection filtering for every value of u;
that we want to test. This process can be very time-consuming.
On the other hand, we have some a priori information on the
static shift values like their distribution or maximum values,
we can then use this to set the step size: we start with a large
step size and lower it as the statics solution becomes closer to
the a priori distribution. This saves us from the computational
complexity of the line search. By setting the step size this way,
we limit the solution space of the statics term in the objective
function and guarantee that we converge towards the desired
result by avoiding local minima.

EXAMPLES
Synthetic data

We generate two synthetic data sets fitting the data model
used in our algorithm. They consist in three band-limited lin-
ear events, with random static shifts applied and random noise
added. Two different magnitudes of shifts are tested. In Fig. 1,
shift values are randomly distributed between —4 ms and
+4 ms, which is the sampling interval. In Fig. 2, the shifts
are randomly distributed between —32 ms and +32 ms (with
the same sampling interval). In (Fig. 1), we are able to remove
random noise and to preserve the shifts at the same time, even
when the shifts are large (Fig. 2). We also show in these figures
the limit of conventional projection filtering: irregularities are
smeared and primary events are harmed by projection filtering
as there is residual signal in the difference sections.
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Figure 1 Denoising of three synthetic linear events with small random static shifts: (a) input data, (b) denoised data using statics-preserving
projection filtering, (c) noise removed with statics-preserving projection filtering, (d) denoised data using conventional projection filtering, (e)

noise removed by conventional projection filtering.
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Figure 2 Denoising of three synthetic linear events with large random static shifts: (a) input data, (b) denoised data using statics-preserving
projection filtering, (c) noise removed with statics-preserving projection filtering, (d) denoised data using conventional projection filtering, (e)

noise removed by conventional projection filtering.

Our second synthetic data set (Fig. 3) simulates an event
in a wide-azimuth CMP gather corrected with normal move-
out. The geometry of this WAZ gather is shown in Fig. 3(d).
Azimuthal anisotropy caused by a structural dip generates
jitter on the event as traces are not sorted in azimuth order
and NMO velocities needed for dipping data are azimuth-

dependent. (Fig. 3a). They are handled well by our algorithm
(Fig. 3b), even as the magnitude of shifts increases at large
offsets. The accuracy of the filtering is particularly noticeable
on the side lobes of the wavelet that are perfectly preserved.
This example highlights the fact that our algorithm is effective
even when the amplitude of the shifts is highly variable.
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Figure 3 Denoising of a synthetic WAZ offset gather with statics-preserving projection filtering:(a) input data, (b) denoised gather, (c) removed

noise, (d) map of the source (blue) -receiver (red) locations.
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Figure 4 Preconditioning of a RMO flattening workflow with statics-
preserving projection filtering: (a) raw WAZ CIGs, (b) CIGs de-
noised with statics-preserving projection filtering, (c) stack using con-
ventional RMO flattening sequence, (d) stack using preconditioned
mput.

Real data

In Fig. 4, we use our technique to enhance the flattening work-
flow of land wide-azimuth common image gathers (CIGs)
(Gulunay, Magesan and Roende 2007). The objective is to
improve the signal-to-noise ratio of CIGs and then process
them with a dedicated flattening workflow. As the flatten-
ing method is mostly a local process, it will have a problem
dealing with areas where the signal is completely overpow-
ered by noise. Therefore, the flattening of the noisy data does
not lead to optimal focusing of the stack. After the appli-
cation of statics-preserving projection filtering on each CIG,
the signal-to-noise ratio is improved and static shifts are pre-
served (Fig. 4a,b). Statics-preserving projection filtering uses
bigger spatial windows than conventional trim statics estima-

tion algorithms because we use the same sizes as conventional
projection filtering (here 30 traces and 300 ms). Consequently,
we are able to recover the signal even in areas where it is very
weak with respect to noise. We use CIGs cleaned up in this
way for the calculation of time shifts in the flattening process.
We apply the resulting shifts to the original (noisy) gathers
and stack the result (Fig. 4d). We compare the stack of the
conventional gather flattening technique (Fig. 4c¢) to this re-
sult to isolate the effect of the denoising on the estimation of
the shifts. The higher signal-to-noise ratio on cleaned gathers
leads to a better estimation of time shifts for flattening, which
results in a better focusing of the stack especially where events
are dipping.

CONCLUSION

We demonstrated that with statics-preserving projection filter-
ing, we are now able to attenuate random noise when static
shifts are present in the data. We also demonstrated that our
method brings out a significant uplift in the signal-to-noise
ratio when processing wide-azimuth land data.

The natural extension of this work would be to implement
a 3D statics-preserving projection filtering. Most of the the-
oretical developments in this paper still hold in case of 3D
projection filtering. In fact, any process that relies on the least-
squares minimization of a linear functional of the data (e.g.,
least-squares Radon transform) could potentially benefit from
this type of algorithm, which estimates the best static shifts
for the problem.
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APPENDIX: DEMONSTRATION OF
INEQUALITY IN EQUATION (10)

First, we calculate the energy of the term created by the static
shifts. We then suppose that the shifts and the signal are sta-
tistically independent, which gives:

E,ls( f. x)(explj27 ft.] = 1)
= E.(Is(f. x)Pl(explj27 f1.] — DP)
= Ex(Is(f. x)P) Ex(l(explj2m 1] — D). (A1)

We want to find a bound on E.(|(exp[j2n ft.] — 1)|?). We use
the fact that |sin(x)| < |x| to obtain :

|(expl 27 ft] = 1)|* = 4sin’(n f1.) < 4(n ft.)*, (A2)

which we integrate using the Gaussian distribution #, ~
/2 exp[—3(3*)*]. We find:

E.(|(explj27 f.] = 1))

, 1 1(2x\°
5/124(71}%) tﬂmexp (—2 <E) )dx
2

(A3)
<7t %

which shows inequality (10).
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