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Summary 

 

Projection filtering has been used for many years in seismic 

processing as a tool to extract a meaningful signal out of 

noisy data. We show that its effectiveness reaches a limit 

when seismic events are affected by static shifts. Such 

shifts degrade the lateral coherency of the data, which is the 

strongest hypothesis required by projection filtering. We 

propose a method to estimate projection filters and static 

shifts simultaneously in order to perform noise attenuation 

in the presence of static shifts in the data. We then show 

results on synthetic and real data to demonstrate denoising 

capabilities of our algorithm. 

 

 

Introduction 

 

Random noise attenuation has been a subject of interest for 

many years in seismic processing. We now have a wide 

variety of tools to perform such a task. From prediction and 

projection filtering (Canales, 1984; Soubaras, 1995) to 

coherency enhancement (Gulunay, 2007; Traonmilin et al., 

2008), we can efficiently address many situations where 

random noise contaminates the data. However, in all of 

these methods, we have to rely on the hypothesis that the 

signal is spatially coherent in order to estimate the signal.  

 

In some cases, this assumption is hardly met. In land data, 

static shifts caused by near surface propagation effects 

harm the lateral coherency of seismic events. With wide-

azimuth acquisitions, azimuthal anisotropy as well as 

structural dip also generates shifts in the pre-stack domain, 

leading to a rather difficult velocity analysis and more 

generally, pre-stack processing. In these situations, we face 

the following problem: if we cannot correct for these shifts, 

we cannot use conventional noise attenuation techniques 

that rely on lateral coherency and inversely if we cannot 

attenuate noise, it will be difficult to estimate the shifts. 

Usual workarounds lead to tedious workflows of denoising 

and picking iterations (surface consistent refraction statics 

picking and calculation, velocity picking…).  

 

In this paper, we propose a method which estimates static 

shifts and projection filters at the same time, allowing for 

the attenuation of random noise when seismic events are 

affected by large magnitude static shifts. After a theoretical 

description of our algorithm, we show its application on 

synthetic and real data for various processing steps.  

 

 

 

 

Theory 

 

Let us write the problem of estimating static shifts and a 

prediction error filter at the same time: 

       

                      (1) 

  

where A is the prediction error filtering matrix, S is the 

inverse static shift matrix (representing the application of 

one static shift per trace), d is the data in the f-x domain. If 

we can calculate A and S, we will then derive a projection 

error filter P from A (Soubaras, 1995) and use it to obtain a 

better estimate of the noise  contaminating the data: 

 

                 (2) 

 

We immediately see that the relation between unknown and 

known parameters in equation 1 is nonlinear (bilinear), so 

we cannot hope to solve this problem with a simple linear 

least squares technique. We therefore need to use a non 

linear method to solve this problem. 

 

The most straightforward way to perform a nonlinear 

minimization is to use an iterative scheme where we 

linearize locally the problem. Let us assume that we have 

an estimate of the shifts Si, and that lateral coherency is 

enhanced in the data when this estimate is applied. Fixing 

Si in the minimization will allow us to get an estimate of 

the prediction error filter Ai+1: 

    

            (3) 

 

We derive the projection error filter Pi+1 corresponding to 

Ai+1 and use it to solve the following problem for Si+1:  

 

      (4) 

 

where Si+1 is a static shifts operator. With real data, we 

have little guarantee that solving this system directly will 

give correct shifts because coherent noise can bias the 

solution. There is as well a possibility that we fall in a local 

minimum. Instead, we use a conjugate gradient update for 

Si+1: 

 

               (5)     

 

where   is the conjugate gradient direction and  is 

the step size. 

With this update method, we can control the values taken 

by Si+1 and have the guarantee that our objective function 

(Eq 4) will be decreased. 
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Statics preserving projection filtering 

 

Equation 3 and 5 define our iterative minimization 

algorithm. We only need to define the initialization values 

of this algorithm and the step size: 

 

 In practice, we start our algorithm with 

S0=Identity (initial shifts set to 0). This is 

justified by the fact that we rarely encounter 

cases where coherency is totally destroyed by 

shifts.  

 To set up the step size, we have the possibility 

to perform a line search or to find a heuristic 

method to set it appropriately. We used the 

latter one for computational complexity 

consideration.  We also used the step size to 

limit the solution space of the statics term in the 

objective function and to converge towards the 

desired result. 

 

As this problem is nonlinear, local minima can be present 

in the objective function. We found out that these local 

minima are mostly due to aliasing caused by static shifts. 

We used the following technique to deal with aliasing: we 

start iterations with low frequencies, and bring more 

frequencies in the objective function as iterations go. With 

this method, we were able to estimate shifts having values 

as large as the inverse of the minimum frequency present in 

the data. 

 

 

Synthetic data examples 

 

We generated two synthetic datasets fitting the data model 

used in our algorithm. It consists of three band limited 

linear events, with random static shifts applied and random 

noise added. Two different magnitudes of shifts were 

tested. In Figure 1, the shifts values are randomly 

distributed between - 4ms and +4ms, which is the sampling 

interval. In Figure 2, the shifts are randomly distributed 

between -32ms and +32ms (with a sampling interval of 

4ms). We see (Figure 1) that we were able to remove 

random noise and to preserve the shifts at the same time, 

even when shifts are large (Figure 2). We also show in 

these figures the limit of conventional projection filtering: 

irregularities are smeared and primary events are harmed, 

most particularly when shifts in the data are large.  

 

Our second synthetic dataset (Figure 3) simulates an event 

in a wide-azimuth CMP gather corrected with normal 

move-out. We see that azimuthal anisotropy caused by 

structural dip generates some jitters on the event. They 

were handled well by our algorithm, even as the magnitude 

of shifts increases at large offsets. The accuracy of the 

filtering is particularly noticeable on the side lobes of the 

wavelet which were perfectly preserved. This example 

highlights the fact that our algorithm is efficient even when 

the amplitude of the shifts is highly variable.  

 

 

Real data examples 

 

In Figure 4, we use our technique to enhance the flattening 

workflow of land wide-azimuth common image gathers 

(CIGs) (Gulunay et al., 2007). The large amount of noise in 

the pre-stack data (Figure 4a) leads to a difficult application 

of this process: as the flattening method is mostly a local 

process, it will have a problem dealing with areas were the 

signal is completely overpowered by noise. We 

consequently observe that the flattening of the noisy data 

does not lead to an optimal focusing of the stack (Figure 

4c). After the application of statics preserving projection 

filtering, the signal to noise ratio of the CIGs is improved 

and static shifts are preserved (Figure 4b). Because statics 

preserving projection filtering uses bigger windows, we 

were able to recover the signal even in areas were it is very 

weak with respect to noise. We used these cleaned CIGs for 

the calculation of time shifts in the flattening process. We 

applied the newly calculated shifts to the initial noisy 

gathers, and stacked the result (Figure 4d). The higher 

signal to noise ratio on cleaned gathers led to a better 

estimation of time shifts for flattening, which results in a 

better focusing of the stack, especially where events are 

dipping.  

 

Another application of statics preserving projection 

filtering can be the cleaning of refracted arrivals that are 

used for the derivation of statics for reflection data. In 

Figure 5, we show that we were able to attenuate the noise 

contaminating a gather containing linearly moved out 

refractors while preserving statics information for an 

eventual picking. 

 

 

Conclusion 

 

With statics preserving projection filtering, we are now 

able to attenuate random noise when large magnitude static 

shifts are present in the data. We also demonstrated that our 

method brings out a significant uplift in signal to noise ratio 

when processing wide-azimuth land data. 
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 (a)                     (b)     (c) 

Figure 1: Denoising of 3 linear events with small random shifts (a) input, (b) statics preserving projection filtering, (c) conventional projection 
filtering. 

 

 

 

 
       (a)                      (b)     (c) 

Figure 2: Denoising of 3 linear events with large random shifts (a) input, (b) statics preserving projection filtering, (c) conventional projection 
filtering 

 

 

            
 (a)         (b)     (c) 

Figure 3: Denoising of a synthetic event in a wide-azimuth CMP corrected with NMO only (a) input (b) statics preserving projection filtering (c) 

Source (blue) – Receiver (red) map of the CMP. 
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(a) (b)  

 

  
(c)                         (d)  

Figure 4: Denoising of wide-azimuth CIGs and application (a) a raw CIG, (b) the result of statics preserving projection filtering (c) stack of 
flattened noisy gathers (d) stack of flattened noisy gathers using time shifts calculated on gathers denoised with statics preserving projection 

filtering. 

 

 

 

  
(a)                          (b)  

Figure 5: Denoising of first breaks (a) input (b) after statics preserving projection filtering applied. 
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