
GEOPHYSICS, VOL. 68, NO. 1 (JANUARY-FEBRUARY 2003); P. 355–369, 20 FIGS.
10.1190/1.1543221

Seismic trace interpolation in the Fourier transform domain

Necati Gülünay∗

ABSTRACT

A data adaptive interpolation method is designed and
applied in the Fourier transform domain ( f -k or f -kx-ky)
for spatially aliased data. The method makes use of fast
Fourier transforms and their cyclic properties, thereby
offering a significant cost advantage over other tech-
niques that interpolate aliased data.

The algorithm designs and applies interpolation op-
erators in the f -k (or f -kx-ky) domain to fill zero traces
inserted in the data in the t-x (or t-x-y) domain at loca-
tions where interpolated traces are needed. The inter-
polation operator is designed by manipulating the lower
frequency components of the stretched transforms of the
original data. This operator is derived assuming that it is
the same operator that fills periodically zeroed traces of
the original data but at the lower frequencies, and cor-
responds to the f -k (or f -kx-ky) domain version of the
well-known f -x (or f -x-y) domain trace interpolators.

The method is applicable to 2D and 3D data recorded
sparsely in a horizontal plane. The most common
prestack applications of the algorithm are common-mid-
point domain shot interpolation, source-receiver domain
shot interpolation, and cable interpolation.

INTRODUCTION

The recorded wavefield is a sampled version of the continu-
ous wavefield, with the spatial sampling provided by the field
geometry. Ideally, source and receiver intervals should be cho-
sen so that reconstruction of the continuous wavefield from
the recorded samples is possible. The data are then said to be
“properly sampled” (Vermeer, 1990). The resulting source and
receiver intervals are called “basic sampling intervals.”

Often economical reasons dictate that data be recorded with
much larger sampling intervals than basic sampling intervals.
This can cause harmful effects in prestack and poststack multi-
channel data processing. Even when the signal (primary en-
ergy) is properly sampled, organized noise, such as ground
roll and multiples, is often undersampled, especially in areas
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where the noise has a much lower velocity than the signal. Al-
though normal moveout (NMO) correction is sometimes used
to reduce aliasing for some recording geometries (such as off-
end marine shooting), an inherent aliasing problem remains
in the common offset and common midpoint (CMP) domains,
even when source and receiver domains are properly sampled
(Vermeer, 1990). Shot intervals that are larger than receiver
intervals compound the aliasing problem. Trace interpolation
during data processing is a well-known solution to this sampling
deficiency.

Trace interpolation has received much attention in the geo-
physical community during the last two decades. Interpolation
of correctly sampled data is almost trivial, yet it is not so in
the presence of aliasing. Methods of trace interpolation in-
clude sinc interpolation (Jakubowicz, 1994, 1997) after alias
reduction via NMO, most coherent dip interpolation (Larner
et al., 1981), semblance weighted slant-stack interpolation (Lu,
1985), interpolation using event attributes (King et al., 1984),
power diversity slant-stack interpolation (Monk et al., 1993),
Radon domain trace interpolation for irregularly sampled or
missing data (Kostov, 1989; Darche, 1990; Kabir and Verschuur,
1992; Schonewille and Duijndam, 1996), f -x prediction filter
interpolation (Spitz, 1989, 1991; Ji, 1993; Manin and Spitz, 1995;
Porsani, 1999), f -x projection filter interpolation (Soubaras,
1997), t-x domain prediction error filter (PEF) interpolation
(Claerbout and Nichols, 1991; Claerbout, 1992), and others
combining different domains, such as f -x domain wavefield
decomposition using a picked dip field (Pieprzak and McClean,
1988, 1990). Trace interpolation methods that make use of the
frequency-wavenumber ( f -k) domain have also emerged (Pan
and Fields, 1986; Guo et al., 1996; Gülünay and Chambers,
1996). This domain is appealing because of the availability of
fast Fourier transforms (FFT) and the fact that the costly solu-
tion of linear equations that appears in the f -x interpolation
for the interpolated data points turns into complex number di-
visions in the f -k domain. Using this approach, Gülünay and
Chambers (1997b, c) developed a “generalized f -k trace in-
terpolation method” that can interpolate 2D as well as 3D
data by an arbitrary integer factor, L , in both x and y di-
rections. That method can be viewed as a data adaptive t-x
(or t-x-y) filtering method where zero traces are inserted at the
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locations where the interpolated traces are desired. The op-
erator is designed and applied in the frequency-wavenumber
domain ( f -k or f -kx-ky). In this paper, I present this gener-
alized f -k trace interpolation method with some emphasis on
its mathematical properties, and show its application to model
as well as field data examples. The Fourier transform and its
properties used throughout the paper are well documented by
Bracewell (1978) and Burrus (1985).

GENERALIZED f -k TRACE INTERPOLATION
FOR ALIASED DATA

The basic idea of generalized f -k trace interpolation (GFKI)
is that the Fourier transform samples along the wavenumber
direction for interpolated data can be obtained in the trans-
form domain by a point-by-point multiplication of a replicated
version of the original transform with an interpolation opera-
tor. The method is the extension of unaliased f -k interpolation
(UFKI), published by Gülünay and Chambers (1996, 1997a).
GFKI is “general” in the sense that any arbitrary but integer
interpolation factor, L , can be used, and the method is appli-
cable to 3D data. A similar method to GFKI was used by Pan
and Fields (1986), who filtered zero-trace inserted data (which
produces a replicated spectrum along the wavenumber axis)

FIG. 1. The t-x domain representation of the 2D GFKI method: (a) desired gather, (b) known gather, (c) zero
trace insertion to the known gather, (d) zero padded gather, (e) periodic zeroing of every other trace of the zero
padded gather.

with user defined dip filters. For complex data, it is desirable
to have a data adaptive filter design scheme as in the f -x in-
terpolation method (Spitz, 1991). The operators of GFKI are
similar to those used in f -x projection filtering interpolation
(Soubaras, 1997). The interpolation operators used in GFKI
are obtained from the original data at lower frequencies in a
similar way to the f -x domain trace interpolators. Note that the
copy of the f -k transform is done along the wavenumber axis.
This interpolator is equivalent to a filter to be applied to the
zero-trace-inserted data in the time-space domain. Assuming
that the input data are made of linear events, the interpolation
filter at a given temporal frequency which will generate a space
grid that is L times denser than the original space grid is ob-
tained from a temporal frequency that is L times lower than
the original temporal frequency.

Description of generalized f -k interpolator

Let us use a simple 2D example to illustrate the method.
Figures 1–3 describe the time-space (t-x) and frequency-
wavenumber ( f -k) representation of the operator design pro-
cess. They show what happens to the 2D Fourier transform
when one pads the data with zeroes, or inserts zeroes peri-
odically, or when one masks zero-padded data with zeroes
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periodically. Here, the interpolation factor is assumed to be
two (L = 2) for simplicity.

Figure 1a has 60 traces with two linear events. One of the
events dips with 4 ms/trace and the other dips with 8 ms/trace
in the opposite direction. The sample interval of the data is
4 ms. The Nyquist frequency is 125 Hz. The traces are con-
volved with a 4–100 Hz zero phase wavelet with two fre-
quencies (50 and 100 Hz) notched out. Figure 2a shows the
amplitude spectrum (the magnitudes of the complex-valued
f -k transform samples) obtained from Figure 1a. It shows the
two events. One of the events is aliased above 500/8= 62.5 Hz.
The wavenumber axis is labeled as±2kN because I assume that
this is the desired result from interpolation and I only have ev-
ery other trace of this record, as shown in Figure 1b. Let us call
the data shown in Figure 1b the “known” data. Event slopes
on the known data are an 8 ms/trace and a 16 ms/trace in op-
posite directions. The amplitude spectrum of Figure 1b is given
in Figure 2b. This is the spectrum of the known data, and now
both events are aliased; the one with a 16-ms/trace slope aliases
above 500/16= 31.25 Hz, the other after 500/8= 62.5 Hz.
Figure 1c is obtained by inserting a zero trace in between each
pair of traces in Figure 1b. The amplitude spectrum of Figure 1c

FIG. 2. The f -k domain representation of the 2D GFKI method. Amplitude spectra shown are for (a) the
desired gather, (b) the known gather, (c) zero trace insertion to the known gather, (d) zero padded gather, and
(e) periodic zeroing of every other trace of the zero padded gather.

is Figure 2c. Figure 2c is repetitious along the wavenumber axis.
Figure 1c can also be considered to be a version of Figure 1a
with every other trace zeroed. There are events originating
from−2kN and+2kN in Figure 2c. These events are generated
because the trace zeroing process laterally shifts the original
spectrum by kN and then wraps and sums it to itself. The peak
amplitude in Figure 2c is about half of the peak amplitude in
Figure 2a since there are half as many live traces in Figure 1c
as in Figure 1a. Our aim is to find an operator that will turn
Figure 2c into Figure 2a, since that is the desired spec-
trum. That is, I need to find an operator that will boost the
amplitudes of the events originating from f = k= 0 by the
interpolation-factor (which is equal to two in this example) and
zero out the amplitudes of the events originating from −2kN

and +2kN .
For this purpose, I apply the following process: Zero pad the

known data (Figure 1b) in both time and space with enough
samples to raise the data dimensions by a factor of two. This
generates Figure 1d. The Fourier transform of Figure 1d pro-
duces twice as many data samples in each direction (note: since
I use only positive temporal frequencies, it is not exactly two in
the case of frequencies). The amplitude spectrum of Figure 1d
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is shown in Figure 2d. I observe that the data content is the
same as that of Figure 2b and the Nyquist values for frequency
and wavenumber have not changed. Figure 2d is an interpo-
lated version of the spectrum in Figure 2b, and the two spectra
are identical at original f -k samples.

Now, consider the spectrum given in Figure 2e. Figure 2e is
a wrapped version of Figure 2d since Figure 1e is the same as
Figure 1d except that every other trace is zeroed. The peaks in
the transform have about half the amplitude because half of
the traces are missing from Figure 1e as compared to Figure 1d.
This transform (Figure 2e) can be calculated from Figure 2d by
shifting it laterally by kN , summing this result to Figure 2d, and
then by dividing the sum by two. I added 1% of the peak am-
plitude as the bias to Figure 2e since it is going to be used for
a division. The ratio of the spectrum in Figure 2d to the spec-
trum in Figure 2e is shown in Figure 3a for the first half of the
frequency spectrum. For events originating from the origin,
the results are equal to two (which is the interpolation fac-
tor). The maximum value from this division should be two (the
interpolation-factor) unless there are amplitudes in Figure 2e
that are smaller than the ones in Figure 2d (e.g., event cross-
ings). Therefore, the values shown in Figure 2e are clipped at
two. The ratio shown in Figure 3a is zero for events originating
from f = 0 and k=±kN , and two for events originating from
f = k= 0. Indeed, the product of Figure 2c with Figure 3a is
shown in Figure 3b, which is very close to the desired spectrum
shown in Figure 2a. Note that there are many nonzero points in
Figure 3a that are generally from low-energy spots in Figure 2d.

FIG. 3. (a) Interpolation operator as the ratio of Fourier trans-
forms in Figures 2d and 2e. (b) The result of the multiplication
of the copied spectrum (Figure 2c) with the interpolation op-
erator in (a).

In fact, many wavenumbers at the 50-Hz (notch) frequency
slice produce large ratios (on the order of thousands) that are
later clipped to two. Since data sample values are nearly zero
at these points (Figure 2c), the result of the product is also near
zero (Figure 3b). This example shows that it is possible to fil-
ter the f -k spectrum of the zero-trace inserted data (repeated
spectrum) and generate a spectrum close to the desired spec-
trum. For simplicity during this discussion, I have ignored the
phase of the f -k transforms. Therefore, what I present here is
not a proof but an illustration of the interpolation process used
in GFKI.

For an integer interpolation factor, L , the steps for a 3D
GFKI can be summarized as follows.

1) Prepare the data for interpolation.

a) Fourier transform the data (e.g., Figure 4a) from
the time-space to the frequency-wavenumber do-
main. If the time dimension is Nt and the space
dimensions are Nx and Ny, the dimensions of the
resulting data, K ( f, kx, ky), are Nf , Nx , and Ny,
where Nf = 1+ Nt/2, and arguments, f , kx , ky, show
indices rather than physical quantities.

b) Generate a zero-trace inserted volume (L − 1 zero-
traces between each pair of traces along each space
dimension; see Figure 4b for L = 2) and transform
it to the frequency-wavenumber domain. (This can
be achieved much faster by laterally copying the
Fourier transform samples along wavenumber di-
rection(s) L − 1 times. This produces L2− 1 replica-
tions for two space dimensions.) Thus,

C( f, kx + i Nx, ky + j Ny) = K ( f, kx, ky)

i = 0, 1, . . . , L − 1, j = 0, 1, . . . , L − 1.
(1)

This process increases Nyquist wavenumbers by a
factor L since trace spacing is reduced by L in both
directions.

2) Construct the interpolation operator.

a) Zero pad the time-space data in all dimensions by
a factor equal to L − 1 (final t-x-y data lengths be-
come L times the original data lengths, L Nt , L Nx ,
and L Ny). See Figure 4c.

b) Transform the zero-padded time-space data into
the frequency–wavenumber domain. This process
forms the “stretched transform”, S( f, kx, ky). The
number of positive temporal frequencies in this
transform is 1+ L(Nf − 1); the Nyquist frequency
of this function is the same as of the original
data, K ( f, kx, ky). Nyquist wavenumbers are also
the same as those of the original data. The wavenum-
ber increment is L times finer than that of the orig-
inal data. Use only the first Nf of the temporal fre-
quencies produced, ignore the rest. This becomes
the numerator of the interpolation operator.

c) Impose the same zero-trace pattern that exists in
the zero-trace inserted volume (e.g., Figure 4b) to
the zero-padded time-space data (e.g., Figure 4c) by
zeroing the appropriate traces in the zero-padded
volume (see Figure 4d). Transform those data into
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the frequency–wavenumber domain. Call the result
Z( f, kx, ky). Alternatively, this transform can be de-
rived from the stretched transform by shift and sum
operations along the wavenumber axis:

Z( f, kx, ky) = 1
L2

L−1∑
i=0

L−1∑
j=0

S( f, kx + i Nx, ky + j Ny). (2a)

For one wavenumber, it is calculated from

Z( f, kx) = 1
L

L−1∑
i=0

S( f, kx + i Nx). (2b)

d) Add a small bias to Z( f, kx, ky) where its magnitude
falls below the bias.

e) Form the operator by dividing the result of step 2b
by the result of step 2c:

H( f, kx, ky) = S( f, kx, ky)
Z( f, kx, ky)

. (3)

f) Clip the operator, H , at the expected peak value, L2

(at L if there is only one wavenumber axis).

3) Filter and inverse transform.

FIG. 4. The t-x-y domain representation of the 3D GFKI method: (a) known data volume, (b) zero trace insertion
between existing traces, (c) zero padding of the original volume both in time and space directions, (d) zeroing of
every other trace of the zero padded volume. Note that zero trace insertion in (b) and periodic trace zeroing in
(d) are done in both space directions.

a) Multiply the operator derived in step 2f with the
copied spectrum in step 1b:

G( f, kx, ky) = H( f, kx, ky)C( f, kx, ky). (4)

b) Inverse Fourier transform, G, from the f -kx-ky

domain to the t-x-y domain.

The denominator in equation (3), Z( f, kx, ky), is repetitious
in the wavenumber plane. It has L repetitions along both the
kx and ky directions. Therefore, it needs to be calculated only
over the original wavenumber range (kx = 0, 1, . . . , Nx − 1 and
ky= 0, 1, . . . , Ny− 1). The rest can be obtained by laterally
copying it L2− 1 times in the wavenumber plane (Gülünay and
Chambers, 1997b, c). Note that C( f, kx, ky) has one original
and L2− 1 copies as well. Division of C( f, kx, ky) with
Z( f, kx, ky) [when equation (3) is inserted into equation (4)]
can be considered to be the main factor in filling the zero traces
inserted into original data.

The interpolation filter described above is like an on-off
switch. It is equal to zero where events are aliased (linear events
that do not originate from f = kx = ky= 0), and it is equal to the
square of the interpolation factor, L , for strong linear events
that originate from f = kx = ky= 0. At places where the numer-
ator is very small or when side lobe ringing occurs, one may get
other values (as in Figure 3a). Such values need to be dealt with
separately (see the next section).
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This operator interpolates the data at the original temporal
frequencies. Note that both the frequency and wavenumber
content of the data that are used in the operator design are
lower by a factor of L than the content of the output (wavenum-
ber content of the operator is the same as of the original data;
it is just “stretched”).

For a single dipping event, it is possible to prove mathemat-
ically that this operator interpolates the data exactly. For mul-
tidip data, I don’t have such a proof, but hope that the model
and field data examples I provide here will justify the method.
Let it suffice to say that the 2D version of the GFKI operator
derived from equation (3) is similar to the f -x interpolator (as
shown in Appendix A) and that it is defined as the interpolator
that interpolates data that are coarser in the space direction by
a factor L , but at a frequency that is lower by a factor L . The
GFKI method simply assumes that the same spatial interpola-
tor applies to the data at original trace positions and at original
frequencies.

PRACTICAL CONSIDERATIONS

Linearity and spatial-temporal windowing

The GFKI process is based on the assumption that events to
be interpolated are linear in the time-space domain and that
there is a small number of events. This assumption may be vi-
olated in real data, especially in prestack data where there is
significant curvature in the offset direction. Therefore, any cur-
vature in the data must be reduced as much as possible before
interpolation. Since interpolation is often done to help mul-
tichannel processes like Radon transform to work better, the
interpolator should successfully interpolate multiples as well
as primaries. NMO application with a velocity trend between
primaries and multiples works well in reducing offset-related
curvature. Dividing the data into small time-space gates is also
necessary since events can have curvature (e.g., Figure 8).
Depending on the trace spacing, dividing the data into over-
lapping time-space windows of 8–16 traces with 64–128 time
samples often seems satisfactory. Since manipulation of data
in the Fourier transform domain (such as operator taper, dis-
cussed below) can produce wraparound artifacts, the data win-
dows may need zero padding (e.g., four-trace and 100-ms zero
padding).

FFT sizes

Data sizes Nt and Nx (and Ny) must be valid FFT sizes to be
able to make use of FFT for Fourier transforms. In addition,
all other FFT sizes used in the process [such as LNt , LNx (and
LNy), and Nx/L , (and Ny/L)] must be valid.

Hybrid interpolator

The GFKI interpolator and f -x interpolator can be used for
all frequencies whether the data alias or not as long as the data
has low-frequency content. When the data do not alias, one
might as well use a sinc interpolator since it is inexpensive and
adequate for such data. This leads to a hybrid GFKI interpola-
tor. Li (1995) similarly used a sinc interpolator at frequencies
that are not aliased during the f -x interpolation. This requires
a maximum dip specification by the user. In the GFKI method,
the sinc interpolator is implemented by setting the GFKI

operator to zero at wavenumbers that are beyond the original
wavenumber range supported by the data, and to a constant
(L for 2D GFKI and L2 for 3D GFKI) otherwise.

In most prestack data, dips are less than 10 samples per trace
after application of NMO. This suggests that frequencies lower
than one-tenth of the temporal Nyquist frequency, both f -x
and GFKI operators can be replaced with their sinc counter-
part, leading to “hybrid” trace interpolators. Furthermore, in
the CMP domain, data in a space window that contains near off-
sets do not have as much dip as the one that contains far offsets.
For such near-offset space windows, almost all of the temporal
frequencies are below the aliasing frequency and hence can be
processed with the sinc interpolator given above. Therefore,
one may use an offset-dependent maximum dip specification
and vary the aliasing frequency used in the hybrid interpolation
as a function of the location of the space window.

Lagrangian quadratic interpolation of the f -k domain samples

The data size after zero padding is L2 times as big as the
original data size for 2D data. For 3D data, the data size is L3

times as big. Fourier transforms that do not take advantage
of the large number of zeroes in such data volumes can get
expensive. As stated previously, the zero padding in the input
domain is the same as interpolating in the Fourier transform
domain. Since interpolated Fourier transform samples are only
going to be used during operator design, some errors in their
calculation can be tolerated. Indeed, these errors are some-
what inconsequential since ratios are used rather than actual
transform samples. Therefore, one may attempt to interpolate
Fourier transform samples with short operators rather than
calculate the Fourier transform of the zero-padded sequences
with a large number of zeroes. Lagrangian interpolation filters
described by Laakso et al. (1996) can be used for this purpose.

Operator taper in the t-x domain

The spatial and temporal extent of the resulting interpolation
operator may need to be reduced. When the data are noisy, the
operator is known to extend in time, as t-x domain equivalents
of f -x prediction filters do on noisy data. This problem can
be effectively solved by taking the f -k domain operator into
the t-x (or t-x-y) domain and then temporally and spatially
tapering it before taking it back to the f -k domain to apply
to the data. Such a taper on the interpolator is equivalent to
smoothing the operator in the f -k domain. Whereas a temporal
taper suppresses inaccuracies in the operator due to data noise,
a spatial taper forces the f -k interpolator to be small in the
spatial extent like f -x domain prediction filter.

Preserving the original traces and noise reduction
on the interpolated traces

In GFKI, the interpolation operator can generate new traces
at the original locations. These traces are later replaced with
the original traces. Keeping original traces intact, however, cre-
ates a practical problem: interpolated traces are less noisy than
the original traces. For this reason, phase-preserving modifica-
tions on the amplitude spectrum of the interpolated traces may
be needed. Alternatively, the amount of noise on the original
traces can be estimated and added to the interpolated traces.
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The need for addition of white noise

GFKI operators are derived by dividing two spectral func-
tions. Trace interpolation can be considered as an f -k domain
deconvolution process. As in all deconvolution processes, the
f -k domain trace interpolation algorithm needs the addition of
white noise. This addition is done to the denominator to elim-
inate division by very small numbers. A threshold determined
from all of the amplitude spectrum ( f -k or f -kx-ky) samples
can be used, and samples in the denominator that are below this
threshold can be replaced by this threshold during the division.

The need for clipping the operator

When both the numerator and the denominator used in
the operator design have small values, the division may pro-

FIG. 5. (a) A synthetic gather containing four dipping events; all of them are aliased. (b) The f -k spectrum of
the gather. (c) GFKI interpolation of the gather. The interpolation factor is three. Traces 1, 4, 7, . . . , 127, 130 are
the original traces. Traces 2, 3, 5, 6, . . . . , 128, 129 are the interpolated traces. (d) The f -k spectrum of the GFKI
interpolated gather. Note that the spectrum is unwrapped and the original Nyquist wavenumber is extended
three times compared with (b).

duce large values even after the thresholding described above.
Values larger than the expected peak value (L2 or L) need
to be clipped to that value. Also, the operator values that are
less than half the expected peak value can be safely set to zero
since the operator is generally equal to the expected peak value
when the amplitudes in the spectrum are large. One exception
is where events cross in the f -k domain. At these spots, the
result of the division may have amplitudes larger than the ex-
pected peak value, and those values need to be clipped as well.

MODEL DATA EXAMPLES

A 2D synthetic gather made of four dipping events is shown
in Figure 5a. The f -k spectrum of this gather is shown in
Figure 5b. This figure shows that all of the dipping events are
aliased. The result of GFKI trace interpolation of this gather
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with an interpolation factor L = 3 is given in Figure 5c. The
f -k spectrum of the interpolated gather is shown in Figure 5d.
Clearly, the GFKI method unwraps the spectrum as expected.

An example of the application of GFKI to 3D data uses
the model given in Figure 6. This model contains two aliased
dipping planes (made of single spikes) given by equations
k= 2i + 2 j and k= 2i + 4 j where i and j are trace indices along
the receiver and shot directions; k is the time sample index.
The terms “source” and “receiver” are used here instead of
crossline and inline since source and receiver directions are
two orthogonal directions used when GFKI interpolation is
applied to prestack 2D data. There are 32 input traces in both
the source and receiver directions. Plots of the 54th, 55th, and
56th time slices are shown in Figures 7a, 7b, and 7c, respec-
tively (triangular wavelet shapes are due to the interpolation
in the plotting routine). On the 54th time slice, a steeply dipping
event occurs on a line joining (receiver, source) points (25, 1)
and (1, 13). The other dipping event occurs on a line joining
(26, 1) to (1, 26). The 55th time slice (Figure 7b) is empty be-
cause there is no energy in odd-numbered time samples since
the slopes are even multiples of the time index. In other words,
both 2i + 2 j and 2i + 4 j are even and cannot be equal to an odd
number like 55. Figures 7d, 7e, and 7f show the corresponding
time slices after 3D GFKI using an interpolation factor of 2,
which results in 64 traces in each direction. The wavelet shapes
of the interpolated data are fairly consistent, and time slice
55 (Figure 7e) contains nonzero amplitudes on interpolated
traces.

FIELD DATA EXAMPLES

Shot interpolation in the CMP domain with 2D GFKI

For 2D data, or for a CMP line of a 3D marine survey, in-
terpolation is often needed because of the coarse shot interval

FIG. 6. Two dipping planes with an inline dip of 2 samples per
trace and crossline dips of 2 and 4 samples per trace.

(Jakubowicz, 1994). Two-dimensional versions of the methods
presented above can be applied on CMP gathers to interpolate
new shots, which reduces aliasing before applying multichannel
processes like f -k filter or Radon transform. Applications in
other domains, such as common receiver or common offset, are
also possible. Although the CMP domain has the disadvantage
of having large trace intervals (and hence more curvature for a
given number of traces), it has the practical advantage of being
the domain where a multichannel process like Radon trans-
form for multiple elimination will be applied. It also has the
advantage of avoiding smear over nearby CMPs since traces
of each CMP are interpolated independently. Another advan-
tage is the offset-varying maximum dip that allows most of the
temporal frequencies of the inner offsets to be processed with
a sinc interpolator.

A small time window (5800–6800 ms) of an 88-fold CMP
gather from the Gulf of Mexico is shown in Figure 8. An NMO
function derived from a velocity function chosen between pri-
mary and multiple trends was applied to this gather. The max-
imum offset is about 9000 m. Primaries are the overcorrected
events, and the water bottom multiple is the strong undercor-
rected event at about 6030 ms. Figure 9 shows a decimated
gather formed from Figure 8. A sinc-type trace interpolation
is bound to fail at the far offsets due to the severe dips and
the presence of high frequencies. Indeed, the moveout differ-
ence between the primary and the multiple events is more than
2 s at the far offset. Figure 10 is a 2:1 GFKI interpolation on
the decimated gather and has 87 traces (trace 88 is not output
since it is an extrapolated trace). Figure 11 is the difference
between the original full-fold gather and the gather formed by
interpolating the decimated gather (plotted at the same scale
as Figures 8–10). The interpolation is fairly successful. It is least
accurate at the locations where there is large curvature.

Note that the 2D GFKI algorithm to interpolate new shots
can be applied in the common receiver domain as well. Indeed,
in this domain there is less aliasing, and interpolation can suc-
ceed better. Whereas the new shots interpolated in a CMP are
derived from other shots and receivers, the new shots interpo-
lated in the common receiver domain are derived from other
shots shooting into the same receiver. The only disadvantage
here is that one has to sort the data back to the common re-
ceiver domain. The CMP domain is already available when one
is ready to apply Radon transform or even stack.

Shot interpolation in the source-receiver
domain with 3D GFKI

The shot interpolation in the CMP domain discussed above
becomes less reliable as noise in the data increases. One may
improve interpolation results by operating in more than one
space direction simultaneously. One such domain is the source-
receiver domain. Assuming that the source interval is an inte-
ger multiple of the receiver interval, overlapping time windows
of a small data window such as 10 shots× 20 receivers can
be processed with the 3-D version of the algorithm discussed
above to produce new shots. This process is illustrated for a
surface geometry shown in Figure 12. Of course 3D GFKI cre-
ates interpolated receivers as well, but these receivers are not
needed and can be dropped after spatially limiting the receiver
wavenumber axis to the original band. Space windows overlap
along the source and receiver directions. Note that a temporary
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NMO application derived from a velocity function between pri-
mary and multiple velocity trends (as discussed previously) is
necessary to make the seismic events approximately planar in
this domain.

The results of such a 2:1 shot interpolation in the source-
receiver domain from a dual-source “flip-flop” marine 3D
recording from offshore Angola are shown in Figures 13–18.
These results are from an area where the water-bottom ar-
rival is near 3000 ms. The shot interval between two “flips” (or
“flops”) is 50 m, and the group interval is 25 m. Figure 13 shows
a part of an original shot. The event near 6120 ms at trace 1 is the
first multiple of the strong water bottom, and the event around
7000 ms at trace 1 is the first strong interbed multiple. Figure 14
shows an interpolated shot, 25 m away from the shot shown in
Figure 13. Figure 15 is a CMP gather (NMO corrected with
primary velocities) formed from the original shots. Figure 16
shows the same CMP gather after source-receiver domain (3D
GFKI) interpolation. Note that every other trace in Figure 16
is an interpolated trace, and these traces are consistent with
the original data. In general, when data are noisy, I find the 3D
version of the method to provide more consistent interpolated
traces than the 2D version. This may be attributed to the stabil-
ity obtained from the additional space direction. Figures 17 and

FIG. 7. (a) The 54th time slice of data generated by the model in Figure 6. (b) The 55th time slice. There are
no data in this time slice. (c) The 56th time slice. (d) The 54th time slice after 3D GFKI interpolation. The
interpolation factor is two. (e) The 55th time slice after 3D GFKI interpolation. (f) The 56th time slice after 3D
GFKI interpolation.

18 show stacks of the data (zoomed around multiples) before
and after shot interpolation, respectively. Chatter in the stack
in Figure 17 is due to the multiples shown in Figure 15 leak-
ing into the stack due to the coarse trace spacing. Although

FIG. 8. An 88-fold CMP gather from the Gulf of Mexico.
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FIG. 9. CMP gather of Figure 8 after decimation by a factor of
two, resulting in a 44-fold gather.

FIG. 10. A 2D GFKI interpolation of the decimated gather in
Figure 9. The interpolation factor is two. Traces 1, 3, 5, . . . , 85,
and 87 are the original traces, and traces 2, 4, . . . , 84, 86 are the
interpolated traces.

FIG. 11. Difference between the original gather in Figure 8 and
the interpolated gather in Figure 10.

the chatter which is due to the flanks of the multiple curves
goes away after stacking the interpolated data, the apexes of
the multiple curves stack coherently, and therefore most of the
data shown in Figure 18 are multiples requiring suppression by
Radon transform filtering or f -k filtering.

Cable interpolation with 3D GFKI

Recent 3D marine recordings employ more than one cable
for each shot. Although the typical receiver interval is 25 m,
the cable separation could be 100 or even 200 m, which leads
to crossline artifacts in the processed data. When cable sepa-
ration is an integer multiple of the receiver interval, data can
be interpolated in the crossline direction using the 3D GFKI
algorithm. Such a crossline interpolation suppresses artifacts.
About 20 receivers at a time from all of the existing cables (in
the form of overlapping space gates) are used to interpolate
new cables.

One problem in cable interpolation using 3D GFKI is the
narrowness of the space window across the cables. One may
only have a small number of cables (e.g., four) to interpolate,
which may produce a very blurry f -kx-ky spectrum, and the

FIG. 12. Surface diagram used in source-receiver domain shot
interpolation. A small space window is used to generate inter-
polated shots. Space windows overlap along both source and
receiver directions.
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FIG. 13. An original 192-trace shot record from a 3D marine
survey, offshore Angola.

FIG. 14. A shot interpolated with the 3D GFKI algorithm. This
shot is 25 m away from the original shot.

wide cable separation may add to the problem. For these sit-
uations, it is still possible to obtain reasonable interpolation
results as shown in Figure 19. Here 6-cable data from a 3D sur-
vey in Angola were interpolated to produce 11-cable records.
Even numbered cables are the interpolated cables. The original
cable separation is 100 m. There are 96 receivers per cable, and

FIG. 15. A 48-fold CMP gather formed from the original shots.
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the receiver interval is 25 m. The zoom area that is marked with
a box is shown in Figure 20. The middle cable in this figure is the
interpolated cable, and the other two are the original cables.

CONCLUSIONS

Data-adaptive trace interpolation of aliased data is possible
by making use of properties of Fourier transforms. The interpo-
lation algorithm is very efficient since fast Fourier transforms

FIG. 16. CMP after source-receiver domain shot interpolation
with 3D GFKI.

are used. The method, which is referred to in this paper as the
generalized f -k interpolation (GFKI) method, works on fre-
quency slices. Data are first Fourier transformed from the t-x
(or t-x-y) domain to the f -k (or f -kx-ky) domain. Then the f -k
data are laterally copied along the wavenumber axis (along k
or along kx and ky). Lateral copying corresponds to zero-trace
insertion at periodic locations where interpolated traces are de-
sired in the t-x (or t-x-y domain). At a given frequency slice, an
interpolation operator is designed from the data at a frequency
that is equal to the original frequency divided by the interpo-
lation factor. While designing the operator, it is assumed that
the dip content of the lower frequencies is the same as the
dip content of the original frequencies and that events are lin-
ear in the input records. To satisfy this assumption, curvature
reduction on input gathers is done by application of NMO cor-
rections, which are later removed from interpolated data. Small
time-space windows are used to make the events appear linear
in these windows. The operator produces the Fourier trans-
form samples of the interpolated data when multiplied with
the samples of the current frequency. Inverse Fourier trans-
form of these samples form the interpolated data in the t-x
(or t-x-y) domain.

Using the GFKI algorithm, a CMP domain or a source-
receiver domain shot interpolation is done to reduce the shot
interval if it is an integer multiple of the receiver interval.
The GFKI algorithm is also used for cable interpolation. The
algorithm can also be applied to poststack data to reduce

FIG. 17. Stack of the 48-fold CMP gathers (like the one in
Figure 15) containing original traces. The chatter in the deep
portions of the data is due to the aliasing of the multiple
energy.
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crossline (and, if desired, inline) bin spacing. Interpolation of
field data during data processing helps to suppress artifacts
that aliased data create when processed with multichannel
algorithms.

FIG. 18. Stack of CMP gathers (like the one in Figure 16) con-
taining interpolated data.

FIG. 19. Eleven cables resulting from cable interpolation of six original cables. Odd numbered cables are the
original cables. Boxed area is shown in Figure 20.

The GFKI algorithm is similar to the f -x prediction filter in-
terpolation. Both use the low-frequency portion of the data to
derive the interpolation operators. Major differences are that
there is a filter length specification involved in f -x interpola-
tion while there is no such requirement in the GFKI algorithm.
In practice, a taper is used in the GFKI operator in the t-x do-
main, which corresponds to having short f -x domain operators
along the x direction. Both algorithms produce similar results
on field data, with GFKI proving to be the most cost effective
of the two.
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APPENDIX A

SIMILARITY OF GFKI, UFKI AND f -x PREDICTION INTERPOLATORS

The f -x prediction filter interpolator of Spitz (1989, 1991)
can be expressed in the f -k domain. To do this, I assume that
the operator and its components are all zero padded up to the
Fourier transform length, N. If eo and ee represent odd and
even indices of the prediction error filter, e, that annihilates
known, k, and unknown, u, data together at a given frequency
index, f , then

ee ∗ u = −eo ∗ k
(A-1)

eo ∗ u = −ee
+1 ∗ k,

where +1 represents the one sample advanced version. In
f -x prediction filter interpolation, this system of equations
are solved, in the least squares sense, for the unknown data
samples, u, given ee, eo, and the known components, k, of
data (Spitz, 1991). This is because splitting the convolution
equation(

ee
0, eo

0, ee
1, eo

1, ee
2, eo

2, . . . , ee
N−1, eo

N−1

)
∗ (k0, u0, k1, u1, k2, u2, . . . ,kN−1, uN−1) = 0 (A-2)

into odd and even parts leads to(
ee

0, ee
1, ee

2, . . . , ee
N−1

) ∗ (u0, u1, u2, . . . ,uN−1)

= −(eo
0, eo

1, eo
2, . . . , eo

N−1

) ∗ (k0, k1, k2, . . . ,kN−1)(
eo

0, eo
1, eo

2, . . . , eo
N−1

) ∗ (u0, u1, u2, . . . ,uN−1)

= −(ee
0, ee

1, ee
2, . . . , ee

N−1

)
+1 ∗ (k0, k1, k2, . . . ,kN−1).

(A-3)

Now consider only the first line in equation (A-3) and write
this equation in the Fourier transform domain. Keep in mind
that the prediction error filters are derived at half the origi-
nal frequency while the data are at original frequency. Then,
the f -k transform of the unknown data, U( f, k), can be ex-
pressed in terms of the f -k transform of the known data,
K ( f, k), and the f -k transform of the even and odd operator
components:

U(f, k) = [−Eo(f′, k′)/Ee(f′, k′)] K(f, k). (A-4)
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(A different notation for the frequency index, f ′, is used for
the prediction error filter to alert the reader to the fact that
this frequency index represents lower frequencies, although in
reality f ′ = f since these symbols represent indices rather than
actual frequencies.) The same comment applies to k′, that is,
k′ = k, but it corresponds to lower wavenumbers because every
other sample of the operator means coarser sample increment
along the space direction.

Also, consider the following:

1) The FFTs of the odd and even components of the data
relate to the FFT of the full data:

Ae(f, k′) = (1/2)(A(f, k)+A(f, k+N/2))

Ao(f, k′) = (1/2)ej(2π/N)k(A(f, k)−A(f, k+N/2)).
(A-5)

2) The prediction error filter is obtained from the original
data at lower frequencies (by a factor of 2) after zero
padding in time, (and at the original wavenumbers). It is
a whitening filter for the data:

E(f′, k) = 1/D(f′, k), (A-6)

where D( f ′, k) represents the Fourier transform of the
data after padding the traces with zeroes to double the
data length along the time axis. That is, D( f ′, k) is a
stretched, low-frequency version of K ( f, k).

3) A simple identity,

1
a
− 1

b
1
a
+ 1

b

= b− a

b+ a
.

One can then convert equation (A-4) into

U(f, k) = ej(2π/N)k[(D(f′, k)−D(f′, k+N/2))

/(D(f′, k)+D(f′, k+N/2))] K(f, k). (A-7)

Applying equation (A-5) to D( f ′, k) yields

U(f, k) = [Do(f′, k′)/De(f′, k′)] K(f, k). (A-8)

That is, the Fourier transform of unknown data can
be obtained by multiplying the Fourier transform of
the known data by a function that is the ratio of the
Fourier transforms of the odd and even indexed traces of
known data calculated at half temporal frequency. Due
to doubling of the trace distance by selection of odd or
even traces, physical wavenumbers used in the opera-

tor are half of the wavenumbers in data (but they are
“stretched”).

Equation (A-8) is the UFKI interpolation (Gülünay and
Chambers, 1996, 1997a). Since UFKI and GFKI are related
(Gülünay and Chambers, 1997b) the f -x interpolator becomes
similar to the GFKI operator as well. Indeed, the traces used
in derivation of the f -x domain “half-step prediction filters”
by Porsani (1999) for an interpolation factor equal to 2 are the
same as the odd and even numbered traces used in the UFKI
method. Porsani’s filters correspond to the UFKI filters but are
designed and applied in the f -x domain.

Note, however, that there are differences between f -x and
f -k interpolators. First, the f -x interpolator is a least-squares
interpolator. Interpolated data are forced to fit the known data
in the least-squares sense. This is not so in the f -k interpola-
tion. Second, there is a user-defined parameter, the length of
the prediction filter, which corresponds to the number of lin-
ear events assumed to exist in the input data in the f -x in-
terpolation method. The length of this filter is short, and the
filter calculation can be relatively fast, especially for 2D data
where a Toeplitz structure can be used for minimum phase-
type prediction-error filters. First, the filter is solved (at low
frequencies), then the coefficients of this filter are used to form
a set of linear equations at the original frequencies to solve for
the unknown data samples. This part is generally the most time
consuming part of the f -x interpolation (especially in 3D) since
the number of unknown data points is generally much larger
than the filter length. GFKI (and UFKI) turn the linear equa-
tion solving problem into a complex number division in the
Fourier transform domain.

The number of events present in field data is generally not
known. Applying an NMO and splitting data into small time-
space windows reduces data complexity and therefore the size
of the required prediction filters. Even then, there is a chance
of specifying filters that are too short and therefore the need to
specify a filter length may be considered a negative point for
the f -x interpolation method. This, however, has not been a
problem in practice. Furthermore, specifying a finite length for
the filter is analogous to smoothing the f -k spectrum. Smooth-
ing the f -k operator explicitly and spatially, and temporally
tapering the t-x domain version of the operators in both GFKI
and UFKI methods are then similar to using a short prediction
filter in f -x interpolation.

Indeed, all three interpolators produce similar results with
field data. With synthetics using small space gates, f -x interpo-
lation results are cleaner than f -k interpolation results because
small windows blur the Fourier transform. Blurring might cause
the f -k interpolator to be nonzero at certain points in the f -k
domain where it is supposed to be zero.


