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Noncausal spatial prediction filtering for random
noise reduction on 3-D poststack data

Necati Gülünay∗

ABSTRACT

A common practice in random noise reduction for 2-D
data is to use pseudononcausal (PNC) 1-D prediction
filters at each temporal frequency. A 1-D PNC filter is a
filter that is forced to be two sided by placing a conjugate-
reversed version of a 1-D causal filter in front of itself
with a zero between the two. For 3-D data, a similar
practice is to solve for two 2-D (causal) one-quadrant
filters at each frequency slice. A 2-D PNC filter is formed
by putting a conjugate flipped version of each quadrant
filter in a quadrant opposite itself. The center sample of
a 2-D PNC filter is zero. This paper suggests the use of
1-D and 2-D noncausal (NC) prediction filters instead of
PNC filters for random noise attenuation, where an NC
filter is a two-sided filter solved from one set of normal
equations. The number of negative and positive lags in
the NC filter is the same. The center sample of the filter
is zero.

The NC prediction filters are more center loaded than
PNC filters. They are conjugate symmetric as PNC fil-
ters. Also, NC filters are less sensitive than PNC filters
to the size of the gate used in their derivation. They
can handle amplitude variations along dip directions bet-
ter than PNC filters. While a PNC prediction filter sup-
presses more random noise, it damages more signal. On
the other hand, NC prediction filters preserve more of
the signal and reject less noise for the same total filter
length. For high S/N ratio data, a 2-D NC prediction fil-
ter preserves geologic features that do not vary in one
of the spatial dimensions. In-line and cross-line verti-
cal faults are also well preserved with such filters. When
faults are obliquely oriented, the filter coefficients adapt
to the fault. Spectral properties of PNC and NC filters
are very similar.
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INTRODUCTION

Certain prestack processes such as trace-by-trace spiking
deconvolution or zero-phase spectral enhancement often in-
crease the noise content of data. Generally, this noise is at the
high end of the spectrum, and one might be tempted to apply
a bandpass filter to remove it. However, at a given frequency
such a filter would also attenuate the signal. This is because a
bandpass filter operates on the summed amplitude of the signal
and the noise and cannot determine how much of a given ampli-
tude is signal and how much is noise. For this reason bandpass
filters are often used only to view test data (such as decon-
volution tests), and CMP stacking is used to filter out noise.
However, when fold is low, the stacked sections are noisy and
we need a tool that will separate signal from noise and attenu-
ate random noise. Canales (1984) and Gülünay (1986) describe
similar methods, known as f -x prediction filtering, that atten-
uate random noise on 2-D poststack data. These techniques
use the (approximate) linearity of reflection times in a narrow
space window and the finiteness of the number of linear events
in a short temporal window of this space window. They oper-
ate in the temporal frequency domain ( f ). At each frequency,
a spatial prediction filter is designed and applied to the input
data along the spatial direction. Although the term f -x might
imply a 2-D filter, f -x filters are one dimensional. Perhaps a
better term would be x-domain filters (Hornbostel, 1991), but I
use the former terminology since it refers to frequency as well
as space.

Generally, f -x prediction techniques work in the forward
direction (causal), where the present (noise-suppressed) sam-
ple is predicted from the previous (noisy) samples of the input
data. Sometimes f -x prediction filtering is iterated to gain more
noise suppression. That is, the filtered output of an iteration be-
comes input to the next one. A forward prediction filter smears
and moves forward a spike (noise) by one sample. The filter
interprets event truncations, e.g., faults, as noise. Therefore,
there is danger of smearing faults toward the front (forward)
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direction, especially when many iterations of prediction filter-
ing are used. To lessen this problem one can average forward
and backward prediction outputs of raw data. A backward fil-
ter can be designed independently or it can be obtained by
conjugating the forward filter if event amplitudes do not vary
spatially for each dip.

Wang and West (1991) and Hornbostel (1991) use NC filters
for random noise attenuation on stacked data. The NC filters
are also known as interpolation operators (Claerbout, 1991)
or smoothing operators (Robinson, 1967). If the sample at a
constant temporal frequency that is being processed is called
the present sample, then the samples to one side of it (spatially)
could be considered past samples and the samples to the other
side of it future samples. In causal filtering all data samples in
the window are used to design the filter, and only past sam-
ples with respect to an output point are used to construct that
output sample. In NC prediction filtering all data samples in
the window are used to derive the filters, and past as well as
future samples with respect to an output point are used to con-
struct that output sample. Soubaras (1994) explains why an NC
prediction filter used on poststack data should preserve signal
better than a causal prediction filter.

There are some issues that noise elimination algorithms must
address: Can the algorithm separate signal from noise accu-
rately? Can the algorithm leave pure signal unaltered? After
all, if a process cannot handle pure signal, we cannot expect it
to handle noisy cases either. In the case of f -x prediction filter-
ing, the answer to the first question is no. The f -x algorithms
are known to distort signal levels significantly if the noise level
is high (Spitz and Deschizeaux, 1994; Harris and White, 1997),
and they are considered accurate only for low to moderate
noise levels.

Signal preservation quality of a prediction filter applied to
pure signal depends on the nature of the data as well as the algo-
rithm. Factors affecting the performance of the process are the
number of dipping events in the data window, the type of pre-
diction filtering (forward, backward, and noncausal), and the
filter length. As in image processing, there is no preferred di-
rection (along the space axis) in poststack seismic data. Hence,
prediction should be symmetrical (forward–backward). This
argument leads to my use of NC filters in this paper. The type
of data windowing used in the autocorrelation calculations is
another factor affecting accuracy (Kay and Marple, 1981). One
such windowing method, autocorrelation, assumes data to be
zero outside the window of interest. Therefore, the number of
contributors to a given autocorrelation lag decreases as the lag
increases, introducing a bias to the autocorrelation because of
the presence of a data window. Such autocorrelations are some-
times referred as pre- and postwindowed autocorrelations or
windowed autocorrelations. I use biased autocorrelations be-
cause they provide stable matrix inversions (full rank) and
are cheaper to invert (they are Hermitian–Toeplitz or block
Toeplitz matrices). The same type of autocorrelations are used
in FXDECON (Gülünay, 1986), and such autocorrelations are
known to produce front-loaded, compact filters (Abma and
Claerbout, 1995), which are useful in preserving faults. How-
ever, the bias in such autocorrelations can distort the signal
estimate. Burg’s (1975) maximum spectral entropy technique
and its modification (Ulrych and Clayton, 1976; Nuttal, 1976;
Kay and Marple, 1981; Tufts and Kumaresan, 1982; Spitz, 1991)
are two well accepted algorithms which reduce distortions

from windowing. Although the modified Burg algorithm (also
known as the modified covariance method) has less distortion,
filter design is more costly (because of the non-Toeplitz matrix
structure). Furthermore, these filters are not front loaded and
can smear faults if filter order is large. I show that NC predic-
tion filtering, such as the modified covariance method, has no
windowing effect when data consist of a single dipping event
(with little or no noise). A single dipping event model is a good
approximation for most seismic data when the data window is
sufficiently small and NC prediction filters are compact (center
loaded).

PNC AND NC PREDICTION FILTERS FOR 2-D DATA

Because dips are handled properly during filter design, there
is no harm in moving events laterally with causal prediction fil-
ters. However, residues from unpredictable components, such
as amplitude anomalies, move forward by one trace with each
application of the causal prediction filter. Since these filters are
sometimes applied a few times successively to increase their ef-
fectiveness, discontinuities such as faults in the input will move
forward a few traces. This is clearly undesirable. Therefore, it
is important to emulate a symmetric process in the space di-
rection. One way of doing this is to process the input data in
both the forward and reverse directions and then average the
results.

Another way is to design prediction filters that have con-
jugate symmetry. This can be achieved from the forward (or
reverse) prediction filter. First, a causal prediction filter of
length L,

(p1, p2, . . . , pL), (1)

is calculated from the autoregressive Yule–Walker normal
equations (Marple, 1987). In the geophysical industry real-
valued versions of these equations, known as normal equations,
are used to solve for spiking deconvolution operators. The
right side of the equations contains a spike at the first sample.
Then a new prediction filter is formed by placing a conjugate
reversed version of the causal filter in front of itself with a
zero between the two:

0.5
(
p∗
L , . . . , p

∗
1, 0, p1, . . . , pL

)
, (2)

where * indicates complex conjugation (see Galbraith, 1991).
The prediction point is the center of the filter. Each half of
the filter predicts the signal; therefore, 0.5 is used to average
their outputs. I refer to such operators as PNC f -x prediction
filters. Since an operator designed in the reverse direction is
approximately equal to the conjugate of the operator designed
in the forward direction (except when amplitudes vary along
each dip), PNC f -x prediction filter design is similar to (but
not the same as) the averaging method mentioned above.

A conjugate symmetric prediction filter can also be obtained
using two-sided (therefore NC) normal equations. Berkhout
(1977) uses two-sided (real-valued) filters in wavelet decon-
volution of seismic traces and proves desirable properties of
the two-sided filters. Wang and West (1991) use such filters in
f -x prediction. Soubaras (1990) shows the form of the normal
equations needed for NC deconvolution filters and identifies
it as a symmetrical Yule–Walker system. Hornbostel (1991)
uses NC prediction filters for f -x prediction filtering of seismic
data. Electrical engineers have been using 2-D NC prediction
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filters in image processing for awhile (Jain, 1981; Xu and
Azimi-Sadjadi, 1993).

For a 1-D input sequence containing L linear events, a causal
filter of length L is necessary. This filter needs L autocorrelation
lags (r0 through rL−1). An NC filter of length 2L+1 is necessary
to predict the same data. Such a filter needs 2L+1 autocorrela-
tion lags (r0 to r2L). Therefore, NC filter design involves nearly
twice as many lags as causal filter design. The matrix in the NC
filter equations (of size 2L+1 by 2L+1) is Hermitian–Toeplitz
and positive definite. Furthermore, the matrix is main diagonal
heavy (because of the windowed nature of the autocorrelation
lags). The solution, the NC prediction error filter, has conju-
gate symmetry around the center element. This can be shown
easily by

1) rewriting the original equations in reverse (row) order,
2) writing the original equations for the reversed filter,
3) conjugating step 2 to obtain a set of equations for the

conjugate reverse filter, and
4) comparing the results of steps 1 and 3.

Knowing that the NC prediction error filter has conjugate
symmetry, it is possible to reduce the order of the normal equa-
tions from 2L+1 to L+1. It is difficult to derive general expres-
sions of the reduced system of equations for large L. However,
this can be done easily for small L. For example, when L = 1,
the normal equations (i.e., symmetric Yule–Walker equations)
for the NC prediction error filter, e, are


r0 r∗

1 r∗
2

r1 r0 r∗
1

r2 r1 r0






e−1

e0

e1


 =




0

1

0


 . (3)

They can be reduced to a simpler form, where e0, e1, and e−1

are given by

r0 − |r1|2
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r∗

1 − r1r∗
2

r0

r1 − r∗
1 r2

r0
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
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[
e0

e1

]
=

[
1

0

]

. (4)
e−1 = e∗

1

Therefore, the three-point NC prediction filter, p, is

p−1 = p∗
1

p0 = 0 (5).

p1 = −e1

e0
= r1r0 − r2r∗

1

r2
0 − |r2

2 |
For example, if the input sequence has N samples and is made
of one event with a time stepup per trace of �t , then

r0 = N

r1 = (N − 1)z0

r2 = (N − 2)z2
0

, (6)

where z0 = e jω�t . This leads to the three-point NC prediction
filter (

0.5z∗0, 0, 0.5z0
)
. (7)

This solution is different from the PNC filter of the same length.
For a PNC filter of length 3, one needs to solve the normal
equations for a causal filter—order one in this case. This leads
to the causal filter

p1 = r1

r0
. (8)

Therefore, the PNC filter is(
0.5

r∗
1

r0
, 0, 0.5

r1

r0

)
. (9)

Compare this result with equation (5). This result is close
but not the same to that of the NC filter. For the numerical
N-sample example given above, the PNC prediction filter is(

0.5
N − 1
N

z∗0, 0, 0.5
N − 1
N

z0

)
. (10)

This PNC prediction filter has an error 100/N% on all out-
put samples (except the edges), while the true NC filter in
equation (7) has zero error everywhere (except at the edges).
That is, the causal prediction filter or the PNC prediction fil-
ter obtained from it cannot predict a single event exactly even
in the absence of noise. Furthermore, the error is larger for
smaller space gates. This property is observed by others as well
(Gülünay, 1986; Harris and White, 1997). Gülünay (1986) uses
the complex Wiener filter method outlined by Treitel (1974)
but keeps one extra sample for the crosscorrelation to elimi-
nate the amplitude error caused by the biased autocorrelations.
That remedy works only for a single dipping event. An NC de-
sign takes care of the windowing effect for a single dipping
event.

Another benefit in using an NC filter is its ability to predict
amplitude variations along space directions. The basic assump-
tion of the causal f -x prediction is that each dipping event has
constant amplitude along the space direction. Causal predic-
tion filters can handle amplitude variations if they are in the
form of decay in the forward direction (minimum phase). Sim-
ilarly, causal filters can handle amplitude buildup if prediction
is done in the reverse direction. NC f -x prediction filters, on
the other hand, can predict such amplitude variations regard-
less of the direction of the decay (in the absence of noise).
Therefore, for pure signal, NC f -x prediction filters preserve
the amplitude levels of the events when the amplitude varies
smoothly in the space direction. For example, a dipping event
with exponential amplitude variation in the space direction can
be exactly predictable (in the absence of noise) with an NC f -x
filter but not with a PNC f -x filter (see Appendix A).

Figure 1 shows a dipping event with a spatially varying am-
plitude e−0.05(n−1) where n = 1, 2, . . . , 20 is the trace count. The
three-point NC f -x and PNC f -x filters are compared in Fig-
ure 2 by plotting the amplitudes of prediction filter outputs
along the event and the corresponding errors. Curves at the
top are the input, NC filter output, and PNC filter output. The
bottom two curves are for the prediction errors. The NC f -x
prediction filter predicts such data with almost no errors ex-
cept at the edges. The PNC f -x filter, on the other hand, has
an overall loss of amplitude (about 8%). Considering that a
seismic section can have lateral amplitude variations, an NC
f -x filter should be superior to a PNC filter.
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PNC AND NC PREDICTION FILTERS FOR 3-D DATA

Multichannel least-squares filters have been used in the geo-
physical industry for awhile. In such applications the channels
are generally seismic traces. Because a frequency slice of 3-D
data is an image (a function of x, y-coordinates), image process-
ing algorithms are readily applicable. A number of papers dis-
cuss 2-D prediction filters (Van Valkenburg, 1986; Jain, 1981).
Such filters can be designed as causal, semicausal, or NC (see
Figure 3). In image processing articles, the data points that the
filter uses to construct an output sample are referred to as the
region of support (Huang, 1981) or mask.

In the NC prediction filter design, full-plane finite support
is used. The center lag of the prediction filter is zero, and
every output point is predicted by using a mesh of points
around it excluding itself. The filter dimensions can be chosen
to be odd in each direction so the number of data points that
the output is constructed from is equal in the forward and re-
verse directions. One set of normal equations is used to deter-
mine all forward and backward coefficients of the 2-D NC filter.
The resultant 2-D NC prediction error filter and the prediction
filter have conjugate symmetry around the sample being pre-
dicted. As in 1-D filters, it is possible to emulate a 2-D NC filter
using 2-D causal filters (quarter-plane) by conjugate symmetric
composition. For this process four quarter-plane filters or two

FIG. 1. A dipping event with an exponential decay in ampli-
tudes. Wavelets on the traces are identical. The scale of the
traces (peak wavelet amplitude) drops exponentially from left
to right.

FIG. 2. Peak amplitudes on the exponentially varying data of
Figure 1. Top three curves are for input, the PNC prediction
filter output, and the NC prediction filter output. Bottom two
are for difference amplitudes (prediction errors) for PNC and
NC prediction filters.

half-plane filters are used. In the case of four quarter-planes,
two of the planes can be obtained from the other two by con-
jugation if the data do not decay in the space direction. I call
these 2-D PNC filters.

Chase (1992) extends f -x prediction filtering to three di-
mensions. In prediction filtering of poststack data volumes, he
designs and applies 2-D prediction filters in the plane defined
by the in-line (x) and cross-line (y) directions for each temporal
frequency slice of the 3-D data volume—a PNC prediction fil-
ter obtained from half-planes. Following Gülünay et al. (1993),
I propose using full-plane NC prediction filters to process each
frequency slice of the 3-D data because NC prediction filters
have some desirable qualities.

As in 1-D filter design, I use biased (windowed) 2-D autocor-
relations in designing 2-D NC filters. Although this type of lag
estimate, known as the autocorrelation method, biases opera-
tor calculation to some extent, it brings stability and robustness
to the normal equations. Other methods that make different
assumptions about data outside the data window while calcu-
lating the autocorrelation coefficients or while minimizing the
error on the prediction are also possible. In the 1-D filter case,
the autocorrelation method leads to a Hermitian–Toeplitz ma-
trix structure, which allows fast solutions through Levinson

FIG. 3. Two-dimensional prediction filters. The location filter
points in relation to the output point (i.e., x-y origin) deter-
mines the type of a filter.
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recursion (Makhoul, 1975; Kay and Marple, 1981). For 2-D fil-
ters, a block matrix is obtained. The matrix is not Toeplitz, but
each block is Toeplitz.

In 1-D prediction the one-step advance is unique. There is
more than one way of obtaining a one-step advance in 2-D
space: one step in +x or +y or one step in both +x and +y.
Therefore, it is simpler to devise the normal equations for a
prediction error filter than for a prediction filter. As in causal
prediction error filtering, the output of the NC prediction error
filter must have minimum energy. This requirement leads to
the normal equations (Jain, 1981) with a vector whose right
side is all zeroes except at the middle sample. The matrix on
the left side is formed from the autocorrelation coefficients.

The normal equations of the NC filter for 3-D data can be
solved by standard means, such as the Gauss–Jordan technique
for linear systems, after putting them into a real form as de-
scribed by Treitel (1974). One may also use more efficient al-
gorithms that use the block Toeplitz nature of the matrix being
implicitly inverted. Once the normal equations are solved for
the NC prediction error filter, the corresponding prediction fil-
ter can be obtained by normalizing the solution, reversing the
sign, and zeroing the middle sample (zero lag). The 2-D NC
prediction error filter and the 2-D NC prediction filter have
conjugate symmetry around the origin. This same symmetry is
exhibited by the complex 2-D autocorrelations. All the nega-
tive lags of the prediction filter can be obtained from its positive
lags, but I use one set of normal equations to solve for all the
lags simultaneously, as Jain (1981) does for the noncausal fil-
ters. An example of the 2-D NC prediction filters used in this
paper is given in Appendix B.

BENEFITS OBTAINED FROM NC DESIGN

In 1-D prediction, Lx dipping events in the t-x (time–space)
domain need Lx + 1 prediction error filter coefficients with the
causal approach and 2Lx + 1 prediction error filter coefficients
with the NC approach. In 2-D prediction, if Lx + 1 and Ly + 1
are the dimensions of a one-quadrant causal prediction error
filter, then (Lx + 1)(Ly + 1) coefficients must be solved for a
causal prediction error filter. On the other hand, the dimen-
sions of the NC filter are (2Lx + 1) and (2Ly + 1). Appendix B
gives a numerical example of a 3 × 3 filter for a single dipping
event. The dimensions of a 2-D causal prediction error filter for
the same event would have been 2 × 2. Therefore, a 2-D NC
filter is costlier to design than a 2-D causal (or 2-D PNC) fil-
ter. One may naturally ask what benefits are obtained for such
cost. The examples given by Chase (1992) show some smear
across faults. I attribute this to the PNC design of the filters.
A 2-D NC prediction filter, on the other hand, can be compact
yet preserve many geological features well. For example, as
long as geology varies along only one axis (x or y) and when an
NC filter is used, even the shortest filter, such as 3 × 3 (Lx = 1,
Ly = 1), can predict 2.5-D geology with zero prediction error
in the absence of noise. This property of the surfaces may be
termed exact predictability.

Structures that do not vary in one of the two space directions
are exactly predictable; data correlate along the no-change di-
rection perfectly, and the 2-D filter pulls most of its information
from data in that direction. When the input data vary rapidly
in one direction, the prediction will fail if the length of the
1-D filter is small and the prediction is made in the direction

of change. On the other hand, a 3 × 3 NC filter predicts 2.5-D
structures regardless of the amount of change in one of the
directions.

A 3 × 3 NC filter passes vertical faults or lateral amplitude
drops (oriented along the x- or y-direction) with no distortion.
Figure 4 shows how such a filter would preserve an amplitude
change, such as a drop from amplitude A to amplitude B (zero
dip assumed for simplicity), oriented along one of the x- or
y-directions. For this problem the resulting 3 × 3 prediction
filter can be shown to be (−0.25, 0.50, −025, 0.5, 0, 0.5, −0.25,
0.5, −0.25), which is independent of A or B. This filter outputs
an amplitude of A when it is centered on the left side of the
fault and an amplitude of B when it is centered on the right
side of the fault. When the filter is centered at the edge of the
fault where the amplitude is A, its output is also A. Therefore,
this filter preserves such lateral amplitude drops.

If the faults are oriented in an oblique direction in the
x–y-plane, a longer filter, such as 5 × 5, is needed. The

FIG. 4. Performance of a 3 × 3 NC f -xy prediction over an
overamplitude drop from A to B in the frequency slice. The
filter coefficients do not sense the presence of the fault. This
filter produces amplitude A when the output point is to the left
of the edge and when it is at the edge but produces amplitude
B when the output point is to the right of the edge.
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compactness of the NC f -xy filter is illustrated with such a fault
in Figure 5. On the left side, an amplitude discontinuity runs
parallel to the x-axis. The data have no noise, and a 7 × 7 filter
was designed. The magnitude of the filter coefficients are plot-
ted underneath using characters to indicate relative amplitudes
(character 1 for amplitudes between 10% and 20%, character 2
for amplitudes between 20% and 30%, . . . , character 9 for am-
plitudes between 90% and 100%, and character * for peak am-
plitude). The significant coefficients of the filter occupy a 3 × 3
area instead of a 7 × 7 area, making the filter compact (cen-
ter loaded) and making the output of higher spatial resolution
than it would have been otherwise. In other words, specifying
filter length larger than necessary does not alter the filter sig-
nificantly. The right side of Figure 5 shows the same amplitude
discontinuity after rotating it by 45◦. The significant coefficients
of the filter are now along the fault. Therefore, the filter will pre-
serve the spatial resolution of the sections even for an oblique
structure.

In all of the 2-D filter examples given below, I use equal
length in the in-line and cross-line directions (Lx = Ly). In
cases, the in-line and cross-line trace spacing may differ, and
one may wish to have a square filter in geographical terms. This
issue is not covered in this paper.

MODEL AND FIELD-DATA EXAMPLES FOR 2-D NC
PREDICTION FILTERS FOR 3-D DATA

To study the behavior of the NC filter in a more complex
setting, a 3-D model containing five diffractors at positions A,
B, C, D, and E in Figure 6 was constructed. There are 120 lines,
120 CDPs in each line, and the data length is 2 s. Uniformly dis-
tributed random noise was added with noise amplitude 25% of
the peak signal. A time slice at 1400 ms is shown in Figure 7. It
shows four of the five circular wavefronts (the fifth one arrived
earlier). Figure 8 is the NC f -xy prediction filter output. The
size of the space gate was 20 × 20, and the size of the temporal
gate was 500 ms. The operator size of the filter was chosen to be
5 × 5 (Lx = 2, Ly = 2). A small amount of noise still remains on
the output, but the filtering has been very successful. The dif-

FIG. 5. A 7 × 7 NC f -xy prediction filter on two types of faults:
a cross-line fault (left) and a 45◦ oriented fault (right).

ference between the input and output of the process is shown
in Figure 9 for the same time slice. The signal is only barely vis-
ible in the noise section. One can conclude from these figures
that the NC f -xy filter preserves the wavefronts well. A corre-
sponding difference section (input minus filtered output) after
runs with a 5 × 5 PNC filter (constructed from four quadrants
of 3 × 3 prediction error filters) is shown in Figure 10. The PNC
prediction filter (not shown) suppresses more noise than the
NC prediction filter does. However, Figures 9 and 10 show that
the PNC filter rejects more signal than the NC filter does.

A land 3-D data cube is shown in Figure 11. The data cube
of the f -xy NC filter output is shown in Figure 12, and the
difference shown in Figure 13. The space gate is 64 × 64 CDPs.
The size of the temporal gate is 1024 ms. The size of the NC
filter is 5 × 5. Only a small amount of signal leaks to the noise
cube of the f -xy process, giving confidence in the process. Also,
steeply dipping weak coherent noise is well preserved by the
process.

SPECTRAL PROPERTIES OF THE NOISE OUTPUT

The output of the prediction error filter represents the noise
rejected from the input data and thus should contain no signal.
In the model example above, the difference section of the NC
prediction filters looks less coherent than the difference section
of the PNC filter. For the NC prediction error filter, the noise
output does not correlate with the input, but the noise spectrum
is not white (Jain, 1989; Claerbout, 1991). The example to be
given in this section suggests nonwhiteness is not a major issue.
The spectrum of the NC filter is very much like the spectrum of
the PNC filter for short filter lengths. Note also that the noise
output of a finite-length causal prediction error filter will not

FIG. 6. The hyperboloid model with five point diffractors: A,
B, C, D, and E, which are on CDPs 6, 26, 56, 76, and 106,
respectively.
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be white either since the input sequence of the f -x prediction
process is not autoregressive (Kay and Marple, 1981; Soubaras,
1994).

In this section, I compare the average k-spectra (magnitude
of the Fourier transform samples averaged over all tempo-
ral frequencies) for the noise output (i.e., the difference sec-
tion) of the NC and PNC f -x prediction filters for flat events,
buried in random noise. Figure 14 shows the flat events af-
ter adding random noise. The flat events had a white tempo-
ral spectrum before noise addition. Figure 15 is the result of
PNC f -x prediction filtering with L = 1 (length of PNC fil-

FIG. 7. The time slice at 1400 ms from the hyperboloid model
after noise addition.

FIG. 8. The time slice from the output of an NC f -xy prediction
filter.

FIG. 9. The time slice from the difference section for the NC
f -xy prediction filter.

FIG. 10. The same time slice from the difference section for the
PNC f -xy prediction filter.

ter is 3). Spatial windows with some overlaps were used in
processing the 100 CMPs shown (the space window size was
30 traces and the time window size was equal to the data
length). The difference section for the PNC filter is shown
in Figure 16. This section has horizontal streaks, indicating a
significant amount of signal was rejected. Figures 17 and 18
are the corresponding output and difference sections of the
NC filter, with L = 1 (length of NC filter is 3). It is hard to
identify visually any rejected signal in the difference section
of the NC prediction filter (it is present, however, as will be
seen).



1648 Gülünay

FIG. 11. A data cube from a noisy 3-D land survey.

FIG. 12. The same cube in Figure 11 after NC f -xy prediction
filtering. Steeply dipping coherent energy (noise in this case)
is preserved.

FIG. 13. The difference cube for the NC f -xy prediction fil-
tering. No significant amount of coherent energy exists in this
output.

Figure 19 shows the average k-spectra (magnitudes averaged
over temporal frequencies) for the true input noise and for the
noise found by the PNC and the NC prediction filters (Fig-
ures 16 and 18, respectively). A higher value (at k= 0) than
the actual noise in the data means that signal damage has oc-
curred. The signal’s average value at k= 0 was about 7000.
While both filters damage a signal, the NC prediction filter

FIG. 14. A noisy synthetic containing flat events.

FIG. 15. The output of the three-point (L = 1) PNC f -x pre-
diction filtering. Low amplitude at the edges results from the
two-sided filter not having enough live input samples.

FIG. 16. The difference section of the three-point PNC f -x
prediction filtering.
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does less damage (about 2500/7000) than the PNC filter (about
3500/7000). Note the nonflat spectral shape of the noise out-
puts. Both filters seem to take out more energy at and around
k= kN (Nyquist) than needed. The shape of this response is
very much the same as the spectral response of a three-point
filter (−0.5, 1, −0.5). At low k-values where there is signal,
both filters seems to reject less noise than they should have.
The NC filter rejects less noise at k= 0 than the PNC filter
does. It also rejects more noise around k= kN than the PNC fil-
ter does. Figures 20 and 21 show similar comparisons for longer
filters (L = 2 and L = 3). The value L = 2 is still far from being
spectrally correct, but L = 3 is getting close to the desired spec-
trum, suggesting that filter length is a more important factor
than filter type. Also, signal leakage lessens as filter length in-
creases. Figure 22 displays the average spectra at k= 0 versus
L for both NC and PNC filters. The NC filter rejects less signal
than the PNC filter for the same filter length. If one displays
k-spectra for the filtered output rather than the rejected noise,
one sees that the PNC filter does a better job suppressing noise
than the NC filter does (for the same L). The noise level in
the NC output is about 50% higher than the noise level in the
PNC output. This is perhaps because of the fewer degrees of
freedom the PNC filter has compared with the NC filter (the
NC filter uses 2L + 1 autocorrelations, while the PNC filter

FIG. 17. The output of the three-point (L = 1) NC f -x pre-
diction filtering. Low amplitude at the edges results from the
two-sided filter not having enough live input samples.

FIG. 18. The difference section of the three-point NC f -x pre-
diction filtering.

uses only L + 1). The relative performance of the two filters
is reversed, however, in regard to the signal. Figure 23 plots
k= 0 values, the plot of signal preservation. The desired level
is about 7000 for the filter output. The NC filter does a bet-
ter job than the PNC filter (for the same L) in preserving the
signal.

The spectral comparisons made in Figures 19 through 23
are for 1-D filters used in f -x prediction filtering. The 2-D
PNC filter design (obtained from four quarters) used in f -xy
prediction filtering seem to behave in a similar way. For small
space gates 2-D PNC filters reject more signal than 2-D NC
filters do, whereas 2-D PNC filters suppress more random noise
than 2-D NC filters do.

CONCLUSIONS

Noncausal f -x (or f -xy) prediction filters may be used
for prediction filtering of 2-D (or 3-D) data at each temporal
frequency. These filters have less prediction error than their
PNC counterparts. These filters can be compact. For example,
a 3 × 3 NC filter (Lx = 1, Ly = 1) can predict geology that
does not vary in one direction. Slightly longer filters, such as
5 × 5 (Lx = 2, Ly = 2), are needed when faults lie in an oblique
direction. The windowed nature of the autocorrelations used
in NC filter design leads to stable filters. For data with high S/N

FIG. 19. The average wavenumber spectra for the difference
sections for L = 1 runs. Averaging is done over temporal fre-
quencies. The spike at k= 0 indicates that difference sections
contain coherent energy pointing to signal damage.



FIG. 20. The average wavenumber spectra for the difference
section from L = 2 runs.

FIG. 22. Signal degradation plot. A higher amplitude means
more damage. This plot is obtained by plotting the values at
k= 0 from Figures 19, 20, and 21.

FIG. 21. The average wavenumber spectra for the difference
section from L = 3 runs.

FIG. 23. Signal preservation plot. Higher amplitudes mean bet-
ter signal preservation. This plot is obtained by plotting the
value of average wavenumber spectra at k = 0 from the signal
outputs of the filters.
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ratio, NC f -xy filters preserve faults in both the in-line and
cross-line directions. Such filters are less sensitive to the size of
the gate than the PNC operators. An NC f -x prediction filter
can handle lateral amplitude variations along dip directions
much better than a PNC f -x prediction filter can.

The comparison of the signal and noise spectra of the PNC
and NC f -x prediction filters on noisy single-event synthetics
shows that for the same total filter length NC f -x prediction
filters preserve more of the signal and reject less noise than
PNC filters. The spectral shape of the rejected noise is more
strongly dependent on the length of the filter than on the type
of filter. Spectral comparisons of the noise outputs of PNC and
NC filters do not show significant differences in rejected noise
character. Both are nonwhite.
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APPENDIX A

THE NC FILTER AND SPATIAL AMPLITUDE VARIATIONS

This appendix demonstrates that an exponential ampli-
tude variation along the space direction is predictable with-
out error by an NC f -x filter but not by a PNC filter. Con-
sider a complex series represented as (1, a, a2, . . . , aN−1) where
a = eαz0. When z0 = e jω�t , this represents the f -x response
of a dipping event with exponential amplitude variation. Here
the dip is �t seconds per trace, and ω is the angular frequency.
The first three lags of the autocorrelation series are

r0 = SN−1(α)

r1 = eαe jω�t SN−2(α)

r2 = e2αe j2ω�t SN−3(α),

where

SN (α) = 1 + e2α + e4α + · · · + e2Nα.

For L = 1, the three-point PNC f -x filter obtained from the
Yule–Walker approach is

0.5eα SN−2(α)
SN−1(α)

(
z∗0, 0, z0

)
.

The dip component is buried in the complex number z0. This
filter, when applied to data, produces a constant prediction er-
ror (it is the same at every sample except the ones at the edges
of the data):

1 −
(

1 + e2α

2

)
SN−2(α)
SN−1(α)

.

This error is large when the exponential variation is large (re-
gardless of the sign of alpha). For example, for α = 1 (or α = −1)
and N = 30 there is a 43% prediction error in all samples of the
output (excluding the two samples at the edges, where it is
worse). On the other hand the NC f -x prediction filter can be
shown to be

(p−1, 0, p1) = 1
eα + e−α

(
z∗0, 0, z0

)
since equation (5) gives

p1 = r1r0 − r2r∗
1

r2
0 − |r2|2

= e jθeαSN−2
SN−1 − e2αSN−3

S2
N−1 − e4αS2

N−3

= e jθeαSN−2
1

SN−1 + e2αSN−3

and the identity

SN−1 + e2αSN−3 = eα(e−α + eα)SN−2

can be used. This NC prediction filter is independent of N
and produces no prediction error except at one sample at each
end of the window. This is because P1 aligns with ak−1 and P−1

aligns with ak+1 during convolution, producing ak as the output.
Also, when α = 0, this filter reduces to the filter given in equa-
tion (7).

APPENDIX B

THE NC F-XY PREDICTION FILTER FOR A SINGLE DIPPING EVENT

In this appendix I give a simple numerical example for the
NC f -xy prediction filter. I have two purposes for doing so: (1)
to provide the reader a concrete example to check an imple-
mentation of the method and (2) to illustrate that gate effects
are negligible with this method.

I choose a very small space gate, six lines, each with six
CDPs. For simplicity I choose a single dipping event with con-
stant amplitude and look at a single frequency slice: 25 Hz. I
assume that dips are 4 ms/CDP and 8 ms/line (36◦of phase per
trace in-line and 72◦ per trace cross-line). I design a 3 × 3 NC
filter (Lx = 1, Ly = 1) . The left side of the normal equations
becomes a 9 × 9 block matrix. The 3 × 3 NC prediction filter
solution is

Pamp = 1
4




1 2 1

2 0 2

1 2 1




and

Pphase =




−72 36 144

72 0 −72

−144 −36 72


 .

Convolution of this filter with the input produces zero predic-
tion error in a 6 × 6 output area (except at each corner), despite
the fact that the input data length is so short. This robustness
to small data gates occurs because (1) there is no noise, (2) NC
prediction filter design is used, and (3) biased autocorrelations
are used.

In general, if the filter length is (2Lx + 1, 2Ly + 1), then
the first and last Lx samples of the output in the x-direction
and the first and last Ly samples in the y-direction have pre-
diction errors. For this reason, these output points should
be omitted from the output (except when they are at the
edges of the frequency slice) and another space window for
which these points are not at the edges should be used to
process these samples properly. This leads to the processing
of data in overlapping space windows and the corresponding
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amplitude recovery if samples are predicted more than
once.

If I design a 5 × 5 NC f -xy filter (Lx = 2, Ly = 2) for the
same input, I obtain a 5 × 5 prediction error filter that is almost
identical to the filter in the 3 × 3 zone and almost zero at other
lags, thereby showing the stability of the solution. That is, the
filter is center loaded. This is similar to an FXDECON filter
being front loaded (see Abma and Claerbout, 1995). With NC
design technique, we do not need to know how many events
are present in the data, and we can safely use more operator

points than we actually need. However, noise leaks into extra
coefficients, so it is a good idea not to overspecify the filter
length (Bunch and White, 1985).

The 3 × 3 NC prediction filter for flat events is real at all
frequencies and is equal to

P = 1
4




−1 2 −1

2 0 2

−1 2 −1


 .


