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SUMMARY

We have recently demonstrated that two-to-one trace
interpolation for aliased events for 2-D data can be achieved
by working in the f-k domain of the input data.Here we
extend the method to interpolation factors higher than two as
well as to 3-D data by working in the f-k domain of the
output data.

INTRODUCTION

The need for trace interpolation prior to multichannel
processes is well established. An efficient two-to-one trace
interpolation for 2-D data was developed by Gulunay and
Chambers (1996) by making use of the f-k domain and the
sparse plane wave content of the input data. The f-k domain
was chosen because of efficiency. This interpolator was a
forward directional interpolator. The forward-backward
interpolation operators presented by Gulunay and Chambers
(1997) have less interpolation artifacts and can be merged
with sinc trace interpolation. In this paper we extend the f-k
domain trace interpolation to interpolation factors higher than
two and to 3-D data by working in the f-k domain of the
output instead of the f-k domain of the input.

THEORY

Suppose we wish to make a L to 1 trace interpolation where
L is an integer;. that is we wish to interpolate L-l traces
between each pair of traces. The number of traces after
interpolation will be L times larger than the original number
of traces and the trace distance will be L times smaller than
the original trace distance. Note that wavenumber increment
does not change during interpolation since the maximum
offset of the data does not change. If N represents the
number of traces in the input (after zero padding to the length
required by spatial FIT), then there are N wavenumbers
before the interpolation. After the interpolation, the
wavenumbers in the spatial Fourier transform increase by a
factor of L. We therefore expect the maximum wavenumber,
kN, of data to increase by a factor of L. That is, this process,
if done correctly, will extend the spatial bandwidth of data by
a factor of L. This can be done by first creating interpolated
traces and then interleaving them with the original traces. If
interpolated traces are correct, then interleaving them with
the original traces unwraps the spectrum L-l times and
provides the spectral extension.

For L=2, one can use the ratio of the f-k transforms of the
even and odd numbered traces of the known record at half the
temporal frequency (Gulunay and Chambers, 1996) to
interpolate the traces. Going to odd numbered or even
numbered traces doubles the trace distance and wraps the
spectrum once.Since the wavenumber increment stays the
same, the Nyquist wavenumber of the odd or even numbered
traces is halved. The operator, H, that produces the
interpolated (unknown) traces from the known data, D, by
multiplication in the f-k domain

U(f, k)=H(f, k)D(f, k)
is obtained by taking the even and odd numbered traces of
the known data (with no zero traces) as a model and then by
making use of half the temporal frequency. This is done
because we assume a limited number of plane waves (dipping
events) exist in the data. For a plane wave at frequency f,
interpolated and original traces relate to each other the same
way that the even and odd numbered traces of the original
record do at half the temporal frequency, f/2. More
specifically, the interpolation operator can be obtained by
spectral division

H(f, k)=B(f, k)/A(f, k)
where numerator and denominator are stretched Fourier
transforms of the even and odd numbered traces of the known
gather at half the temporal frequency:

B(f, k)=Deven (f/2, k/2) and A(f, k)=Dodd (f/2, k/2).
Since f-k spectra of the odd and even numbered traces are
expected to be the same, magnitude of the operator, H, can
safely be set to one leading to an all-pass operation in the f-k
domain of the input. When a zero trace is inserted between
each pair of traces, we see a replication of the f-k spectrum
along the k direction. Comparing this with the f-k spectrum
of the data interleaved with the interpolated traces obtained
from the inverse transform of U(f, k) given above, we observe
that the net result in the f-k domain of the output is certainly
not allpass, but a data adaptive alias suppressor. Note that
placing a zero trace at every trace location where we need an
interpolated trace produces an f-k spectrum which is periodic
along the k direction with a period of N (corresponds to 2kN).
What is then the interpolation operator to convert the zero
trace inserted record to fully interpolated record? In other
words, we wish to find an operator, 0, such that

G(f, K) = O(f, K) C(f, K)
where G(f, K) is the f-k transform of the full (interpolated)
gather, K=Lk, is the new wavenumber, C(f, K) is the f-k
transform of the zero trace inserted gather. Note that C is a
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For L=2, the output domain based operator, 0, can be related
to the input based operator, H. For a single event with a
slope of At seconds per trace, H can be shown to be

transform of the output data is
          

where C is the L times copied version of D along each axis,
kx and ky and

      
For these data, C(f, K) contains two linear events, one
originating from the origin (O,O), the other from (0, 2kN.) The
operator can be shown to be

  
where

        
Note that this operator takes the value of 2 at the peak of the
dipping event and becomes zero when one moves away from
it by 2kN along the k-axis. That is, it becomes zero at the
alias locations on C(f, K), hence the alias suppression.

When L>2 we cannot form odd and even traces and it may
not be easy to find operator H. Then how do we derive the
operator 0 directly? This we do by taking the original record
and its masked version at L times lower temporal frequency
as model. In other words, we do the spectral division:

        
is the stretched original spectrum and

          
is the stretched version of the Fourier transform of the zero
masked data. Zero masking is done along the x and y-axes
with the same mask. Note again that 1/L in these expressions
necessitates interpolation (stretch) along temporal frequency
as well as each wavenumber direction. As before, B can be
obtained by summing A onto itself after shifting it laterally
L-1 times along each axis, each time with a shift of 2kNx

along KX and 2kNy along Ky directions where kNx and kNy are
the Nyquist wavenumbers of the original data. 3-D f-k
interpolation results will be shown during the presentation..

where
   

PRACTICAL CONSIDERATIONS
   

is the stretched (interpolated) version of the original f-k The following issues should be considered when
spectrum, D(f, k), at L times lower frequency and interpolating in the f-k domain:

   
is the stretched version of the Fourier transform of the zero
masked original data (hence the subscript, z) at L times lower
frequency. For example, when L=3, Dz is the Fourier
transform of the original record after zeroing traces 2,3, 5,6,
8,9... which corresponds to multiplying the input traces with
a combing function

     

• The interpolator, described above, can be applied
prestack or poststack. It assumes that amplitudes of the
events are balanced. To reconstruct the missing shots
during data acquisition prestack gathers have to be
either CMP gathers or common receiver gathers. The
curvature of the data must be reduced and dips are
centered around zero by applying a nominal NMO.

Since multiplication in x is a convolution process along the K
axis and W(K), the Fourier transform of w(x), is also a
combing function, B(f, K) can directly be calculated from
A(f, K) by laterally shifting by an integral multiple of 2kN and
summing it onto itself, L times.During the calculation of B
from A modulo 2LkN is understood, that is, as the
wavenumber in A exceeds its range,   it is
wrapped back.

• At lower frequencies or over areas with small dips there
is no need to calculate the operator with the procedure
described above. Given a maximum dip, a frequency
value can be calculated below which a sinc filter with a
boxcar response is adequate. At such frequencies we do
sinc interpolation. Sinc interpolation reduces the cost
and is more accurate than relying on lower frequencies
when the frequency of interest is not wrapped around.

After inverse Fourier transforming G(f, K), a gather is
obtained with traces at original as well as zero trace locations.
We replace interpolated traces that are at the original trace
locations with the original traces. This way we preserve the
original traces in the final output and also provide visual
quality control since interpolated traces and original traces
are side by side and the interpolation errors are now easy to
detect.

• Variation in moveout with offset can be exploited when
operating on CMP data. This means that inner offsets of
a CMP gather can be interpolated with sinc at almost all
frequencies.

• The expected maximum amplitude of the operator,
O(f, K), is L. Values higher than this are most likely
due to a small denominator and can be clipped to L.

Extension of this method to 3-D was implemented as follows.
Assume that the input has Nx traces along x-axis and Ny
traces along y-axis.We desire LN, traces along x-axis and
LNy traces along y-axis after interpolation. Let D(f, kx ,ky)
represent the f-k transform of the input. Then the f-k

• The operator O(f, K) has both an amplitude and phase
spectrum. As cast above it acts like a forward
interpolator. By selecting which traces to zero in the
input data in obtaining the denominator, the operator
can be made symmetrical in the t-x domain. For L=3,
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w(x)=(0,1,0,1,0,1,0...) produces almost a symmetrical
( o(-t,-x)=o(t, x) ) operator in the t-x domain. If Fourier
transforms of zero masked traces, B, are obtained from
A as before, this can be done by phase shifting each
component proportionally to the lateral shift before
summation. Even then, noise might cause the operator
not to be exactly symmetrical in the t-x domain.
Although it is possible to force it to be symmetrical by
manipulating its f-k spectrum, we find that bringing the
operator to t-x domain, applying a symmetrical taper,
and taking it back to f-k domain produces more reliable
results.

•     Zero traces might need to be padded to the data to
satisfy FFT input size requirements and to eliminate
lateral wraparound. Since this process relies heavily on
the linearity and sparseness of the events in the t-x
domain, spatial and temporal gating is generally
required. A vertically and laterally sliding window
scheme with a capability of discarding the few traces at
the edges of the space window may need to be used.

• As in any frequency domain deconvolution process
small values in the denominator need to be detected and
precautions taken. We find one percent of the peak
amplitude of the f-k spectrum to be an adequate
threshold for this.

• For steeply dipping data like ground roll one might be
tempted to interpolate many new traces between each
pair of input traces to improve the preprocessing. Large
interpolation factors not only increase the volume of
data to be processed but are less accurate. A large L
means that frequencies lowered by a factor L will be
used for operator design.Since the low end of the
seismic spectrum is generally missing or falls into the
taper zone of the field filter, we find large L values not
producing reliable operators at low frequencies. We
find L=2 and 3 to be most likely applications of this
technique. L=4 can be achieved by a cascaded run of
two L=2 runs and seems to be more reliable than a
straight L=4 run. A possible explanation for this is that
two L=2 runs rely less heavily on the low frequency
information than a single L=4 run.

EXAMPLES

Figure 1 and 2 illustrate a CMP gather before, and after 3: 1
trace interpolation. The dataset is from the Gulf of Mexico
and has an offset extending to 8000 m offset. Therefore
water bottom multiples, have a large moveout. Data was
NMO corrected with a velocity between multiple and primary
trends so that both primaries and multiples are in reasonable
dip range. Dips at the far offsets are about 50 ms per trace
before interpolation. The technique described above is used
to do the interpolation except at low frequencies and low dips

(inner offsets) where sinc interpolation is adequate. A set of
12-trace 400 ms windows overlapping 100 ms in time was
used for the interpolation We observe that 3: 1 interpolation
of the primaries and multiples is adequate.

CONCLUSIONS

We have illustrated a general method of interpolating aliased
seismic data using only the f-k domain. The method is
general in the sense that it allows interpolation factors greater
than two and is also applicable to 3-D data.
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Figure 1. A CMP gather from the Gulf of Mexico. NMO with a velocity function between primary and multiple trends was applied.

Figure 2. The CMP in Figure 1 after 3:1  f-k domain trace interpolation.
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