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Summary

Trace interpolation for aliased events may be achieved
efficiently by working in the f-k domain where the process
unwraps thef-k transform of aliased events. After unwrapping,
multichannel processes that are sensitive to spatial aliasing,
such as f-k filtering, Radon transformation filtering, DMO, and
migration, produce more desirable results.

Introduction

The aliasing that results from inadequate digital sampling is
well known. Interpolation of digitized and aliased
one-dimensional data without aliasing artifacts is impossible;
however, interpolation of two-dimensional aliased data may be
achieved for data containing a finite number of events which
approximate straight lines on 2-D displays. In the following
sections, we review interpolation related work for both one and
two dimensions.

Aliased 1-D signals

Although sampling digital signals to a new set of unit delay
samples is a simple index shifting, resampling with fractional
delay is not trivial. Fractional delay, i.e., interpolation, of one-
dimensional digital signals is achieved by making assumptions
as to the spectral content of the data. A common assumption is
that underlying signal does not have a spectrum wider than that
of the original samples,

     

otherwise ,
where  (k) represents the Fourier transform of the
original samples (known data) and  is the Nyquist frequency.
Note that k' is the wavenumber of the interpolated gather and

its range is larger than that of k by a factor, M, corresponding to
the value of fractional delay

 .
When fractional delay is 0.5, M is equal to 2.

This assumption of band limitedness (to the baseband) of the
interpolated data insures that interpolated samples behave well
when placed between the original samples. When only the
interpolated samples are considered, the best one can hope to
perform is an all-pass operation in the original transform
d o m a i n :

 =    .
While many 1-D interpolation methods are available, the best
such methods can achieve is to approach the ideal filter. The
ideal filter is all-pass, but band-limited when interpolated
samples are interleaved with original samples (Laakso et al.,
1996). This ideal filter is known as sinc or sine cardinal
function. When the fractional delay is equal to half of the
sample interval, the sinc function becomes

 =
    
   

  .

Its system response is

    .

When the underlying signal has a finite bandwidth and when
the sampling rate is higher than the maximum frequency
contained in the signal, the sampled version of the signal is
adequate for reconstructing the signal values at any fractional
delay. On the other hand, when either the signal is not band
limited or sampling is course, the 1-D signal is aliased and
there is no unique way of reconstructing the interpolated
samples. Shannon’s sampling theorem (Marks, 1991) states
lack of uniqueness in a more rigorous fashion.For this reason,
analog signals are passed through an analog high-cut filter
before being digitized.

Aliased 2-D signals

Two-dimensional digital signals suffer from similar aliasing
effects with one difference: the aliased 2-D spectrum can be
unwrapped accurately if the underlying data are made of a finite
number of linear dipping events.

It has long been recognized that multidimensional seismic data
processing algorithms, such as migration and DMO, are prone
to potentially damaging artifacts due to aliasing.These
processes do no damage if data going into them are properly
sampled. When required samples are not recorded in the field,
we need to reconstruct them from the field data.Many of our
industry’s poststack interpolation algorithms emerged from this
need for proper sampling.

The most straightforward trace interpolation method is a 1-D
interpolation in the space direction at each time sample by
Fourier transforming in the k direction, padding a large enough
number of zero samples, and inverse transforming. Of course, .
the same interpolation is possible for each frequency slice of
data if one prefers to work in f-k domain. The process is the
deterministic, data independent, sinc function, trace
interpolator. We find that sinc interpolation, which is
performed by zero padding along the k axis, can be expressed
in a different way when the f-k transform of the unknown traces
need to be related to the f-k transform of the known traces:

 
      .

That is, the sinc interpolator may be written as

 =   ,
and is independent of the temporal frequency, f Note also that
the interpolator is an all pass operator in the input domain.
When unknown traces are interleaved with the known traces,
the spectrum of the new gather has the same content as the
known traces (half-band interpolation in k'). This spectrum is
confined to -kN, +kN zone and is wrapped.
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Sinc interpolation does not solve the interpolation problem
adequately when data are spatially aliased. Many interpolation
algorithms are available within the industry but most suffer
from aliasing. In some approaches, aliased energy is removed
by filtering when possible. Spitz (1989, 1991), however,
exactly honored and interpolated aliased data using a
temporally wideband assumption and scarcity in the number of
dips the data contain. His method is known as f-x interpolation.
Spitz’s work inspired further research at Stanford University

(Ji, 1991; Balog, 1991).

How field geometry (source and receiver positions) of seismic
recording forms a digital surface sampling and how field arrays
can help suppress spatial aliasing by limiting the spatial
bandwidth of the signals are discussed in detail by Vermeer
(1990). The use of field arrays affects both signal and noise.
More importantly, Vermeer points out that trace interpolation
in the common midpoint domain can de-alias the seismic
wavefield by providing missing shots. An interpolation of this
type may reduce, among other things, the checkerboard effect
that some land geometries exhibit on time slices or the zipper
effect caused by multiple leakage seen on multisource
multicable marine data. Vermeer also offers a limited
unwrapping scheme (from first half k plane to third half k
plane) when input data are recorded off-end and all moveouts
are of the same sign.

Poststack suppression of such artifacts is demonstrated to be
successful in limited cases (Gulunay et al., 1994) by  or
simply K-notch filtering (Hampson, 1995). Aliasing problems
are best addressed prestack either within the multichannel
algorithms such as DMO (Beasley and Mobley, 1988) or by
interpolation before the multichannel process.

Because the normal moveout (NMO) process can reduce
aliasing to a large degree, Jacubowitz (1994) was able to
interpolate prestack traces via the sinc interpolator in wavefield
reconstruction. When the residual moveout left after NMO is
not severe (i.e., not much conflicting dips or multiples in the
data), the sinc interpolator works well.

Wombell and Williams (1995) use Vermeer’s idea of shifting
from first half k plane to third half k plane (for 3-D data) and do
prestack interpolation in the  domain (frequency, shot
wavenumber and receiver wavenumber domain).

Recently Mannin and Spitz (1995) used the unaliased f-x
interpolator in the CMP domain to achieve wavefield
reconstruction. Unfortunately, solving the two sets of linear
equations in the Spitz method is expensive, especially if one
uses the edge-effect-free form of the prediction equations which
lead to non-Toeplitz matrix structure.

Claerbout (1991) provides an unaliased interpolator but in the
t-x domain through 2-D prediction error filters. We did not test
his interpolator but expect it to be costly.

Among all interpolators discussed above, the accurate ones in
the presence of aliased energy are f-x or t-x prediction error

filter methods. Because of cost considerations we explored the
f-k method. We find that trace interpolation can be done
adequately in t-x domain. Our method is limited by the same
factor as Spitz’s method: data must not be missing low
frequencies (see Balog, 1991). In the following, we explain our
method and tie it to Spitz’s method.

Unaliased f-k interpolator (UFKI)

Basic concepts leading to the unaliased f-k interpolator for
fractional delay of 0.5 along the space direction are given
below.

1) Odd and even numbered traces of a gather each have an
f-k transform which is wrapped once compared to the
transform of the original gather.F-k transform of the odd
and even numbered traces can be calculated from the f-k
transform of the original gather using expressions given
by Burrus (1985).

2) Interleaving odd and even numbered traces is a process
which unwraps the spectrum of odd (or even) numbered
traces once. Therefore, if we are able to calculate even
numbered traces properly, interleaving them with the
original (odd numbered) traces will produce an
unwrapped (full k band) spectrum. In other words, a
proper interpolation of 2-D data extends the spectrum
from -kN, +kN range to -2kN, +2kN range. A correct
interpolator is a full-band interpolator. rather than half-
band (sinc) interpolator.

3) The magnitudes of the f-k transforms of the odd and even
numbered traces of a gather are almost identical.
Therefore, we can assume that the unknown f-k transform
differs from the known f-k transform only by phase.

4) Phase information needed to reconstruct the unknown
traces from known traces can be obtained from the f-k
transform of certain components of the known gather at
half temporal frequency.

Our method can be related to Spitz’s method as follows. When
one writes the Spitz equations for unknown data, one finds that
it splits the prediction error filter coefficients into odd and even
numbered components. We consider only forward (or
backward) prediction equations and keep only the equations
which contain one kind of prediction error filter coefficients on
one side of the equations (i.e., odd numbered components on
the left and even numbered components on the right or vice
versa). We assume that resulting linear equations can be
converted to cyclic convolutions. With these approximations,
one can replace the Spitz equations with complex number
products in the f-k domain. In other words, we consider only
part of the Spitz equations

   =   
(where  as Balog (1991) did. We then express these
equations in the f-k domain:
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Coefficients A(f,k) and B(f,k) belong to the left and right hand
side, respectively, of the previous equation. They are related to
the Fourier transform of the original gather.This is so because
prediction error filter coefficients   . .  are obtained
from known data at half temporal frequency. The f-k transform
of the prediction error filter E relates to the f-k transform of
known data because

 

Note that the operator H =B / A can be considered as a
deconvolution operator applied in the f-k domain. Some white
noise addition is necessary to protect against division by very
small numbers. Note also that operator H depends generally on
both f and k. In the special case of a single dip event the
operator reduces to

    

where At is the slope (seconds per trace) of the dipping event
on the input gather.Note that this full-band, unaliased, f-k
interpolator is independent of wavenumber k. This is in
contrast to the sinc interpolator, which is independent of
temporal frequency f.

Model data example

Figure 1 shows a 30 trace 4 ms sampled model that includes
two aliased events (both are full-bandwidth), one with a dip
equal to two sample intervals per trace, the other with a dip
equal to -4 sample intervals per trace. Figure 2 is the result of a
zero padding type (sinc interpolator) f-k interpolator. Note that
odd numbered traces are identical to the original data. Both
events show aliasing artifacts on even numbered (interpolated)
traces. Figure 3 shows the result of the unaliased f-k
interpolator. Again, odd numbered traces are identical to those
of the input data and interpolated traces are the even numbered
traces. We see that they now tie to the original traces well.

Field data example

UFKI as cast above is only valid for linear events as are other
spatial interpolators. We can apply UFKI to complicated data
if we consider small data windows. To eliminate the artifacts
(operator wraparound), we may need to consider operator
tapering in the t-x domain. If interpolation is done in the time-
offset (CMP, common shot, or common receiver) domain, we
must apply NMO to reduce the curvature existing on the data.
With these precautions, satisfactory results can be obtained for
aliased data. Figures 4 and 5 show before and after band-
limited (sinc type) f-k interpolation processes on an NMO-
corrected CMP gather. Note that the NMO function was
chosen to be between the primary and multiple trends so that
both could be interpolated equally well. We observe that sinc
interpolator aliases at far offsets. Figure 6 is the result after
unaliased f-k interpolation. We observe that aliased events are
correctly interpolated by UFKI.

Conclusions

We have demonstrated that it is possible to interpolate aliased
seismic gathers using only the f-k domain. In this domain,
solution of linear equations reduce to complex number
divisions.
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Fig. 1: A simple model with two aliased events. Fig. 4: A CMP gather (NMO-corrected with a velocity
function  between primary and multiple velocity trends).

Fig. 2: The model after band-limited (i.e., sinc type) Fig 5: The CMP gather after sinc type f-k interpolation
f-k interpolation.

Fig. 3: The model after interpolation with UFKI. Fig. 6: The CMP gather after interpolation with UFKI.
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