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SUMMARY 

 In designing  operators for random noise suppression  the following factors are 

important:  uniqueness of operators,    insensitivity of the operators to the size of the 

gate used in their derivation,  shortness of operators in all directions,  abrupt event 

termination handling and  amplitude variations handling. 

    In  the frequency domain spatial prediction filtering,  operators are generally 

designed as forward prediction filters through the use of Yule-Walker equations. They 

are then halved, conjugate flipped and placed in front of the forward filter with one zero 

in between. The resulting operator is zero phase.  We will call such operators "pseudo-

forward-backward operators."  As demonstrated in this work, true forward-backward 

prediction filters (designed using noncausal normal equations) seem to satisfy all of the 

above criteria much more than their pseudo forward-backward  counterparts. 

      

INTRODUCTION 

 Prediction filtering in two dimensions has recently been used for post stack 3-D 

data (Chase, 1992).  Filters of this method are different but similar to pseudo forward 

backward filters.  We use a true forward-backward (ie. noncausal) design technique 

which has some interesting properties.  Before introducing our method we review the 

previous work on one dimensional forward prediction filters used in the industry. We 

then introduce one dimensional forward-backward filters. 

 

a)- One dimensional forward prediction filters for  2-D post stack data       

 One dimensional post stack random noise elimination filters were first introduced 

by Canales (1984).  This approach follows Claerbout (1976),  and uses auto-correlation 

lags (r0,r1,...,rL ) for the prediction error filter (1,e1 , ...,eL  ).  Resulting prediction error 

operators are minimum phase in the space direction (forward).  The normal equations 

resulting from this approach are also known as  (pre- and post-) windowed  Yule-Walker 

 equations ( Kay and Marple, 1981) and can only predict  "impulsive" (minimum phase) 

inputs or impulsive components of the input (impulsive series are also known as 

autoregressive or AR processes). The normal equations for the prediction error filter 

involve auto-correlation lags (r0,...rL) on the left-hand side of the normal equations and a 

spike at zero lag on the right-hand side.  (The corresponding normal equations for the 

prediction filter  (p1,..,pL) involve auto-correlation lags (r0,...rL-1) on the left-hand side and 

lags (r1,....rL) on the right-hand side of the normal equations.)  Since each 

auto-correlation lag involves one less term than the previous lag, small data gates, say 

10 traces,  give unacceptable prediction error filters with this technique.   That is, this 

approach can't even predict one event exactly if the data gate is short (Harris and 

White, 1991). 

   Gulunay (1986a)  similarly used windowed auto-correlations but a different 

approach to the solution (complex Wiener filter design).  He observed that the 

shortness of the desired output by one sample caused  significant prediction errors for 

small space gates and suggested a hybrid method  named "fxdecon" (now used as a 

generic name)  which keeps an extra trace to use in forming the cross-correlation on 

the right-hand side of the normal equations.  The resultant filters are not necessarily 

minimum-phase.  This approach reduces  the gate effect to zero for the special case of 



one event. 

 

b)- One dimensional noncausal prediction filters  for 2-D stack data  

 Because dips are handled properly during filter design, there is no danger of 

moving events laterally with forward prediction filters. However, residues from 

unpredictable components, such as sudden truncations in data, move energy forward 

with the application of forward filters.  Therefore it is important to do the processing 

either both in forward and reverse directions (Gulunay, 1986b) or with zero phase filters 

in the space direction. This requirement is known to be equivalent to conjugate 

symmetry in the filter: P-k=Pk
*   for k=1,...,L.   In going from one-sided (causal) prediction 

filters 

 p  ,...   ,p  ,p
L21
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 to two-sided (noncausal) filters the usual procedure is to form the operator 

 p,...,p,0,p,...,p0.5
L1

*

1

*

L
2 

where * indicates complex conjugation. We will call such operators pseudo FBPF 

(forward-backward prediction filter). 

 For an input sequence containing L linear events, the use of a 2L+1 length 

(noncausal) operator and the use of  noncausal normal equations result with the true 

FBPF, say,  

 P ..., ,P  ,0,P ..., ,P L11-L- 3 

 The normal equations are of size 2L+1 and involve auto-correlations lags r0,...,r2L . The 

matrix representing the coefficients is Toeplitz Hermitian and positive definite because 

of the windowed nature of the auto-correlation lags. The solution is 

conjugate-symmetric ( P-k=Pk
* ) as is the pseudo FBPF.  However, true FBPF sample 

values are different from those of pseudo FBPF and have smaller prediction errors on 

the pure signal. This will be shown in the following example.  Consider  a  5-point one 

event input (1,z0,z0
2,z0

3,z0
4). The 3-point pseudo FBPF is (0.4z0

*, 0, 0.4z0) and its error 

series is   (0.6, 0.2z0, 0.2z0
2, 0.2z0

3, 0.6z0
4).  The 3-point true FBPF is  (0.5z0

*, 0, 0.5z0) 

and its error series is  (0.5, 0, 0, 0, 0.5z0
4).  (Non-zero coefficients here represent 

unpredictable parts and can be ignored.)  We observe that  true FBPF is not sensitive 

to the gate size it is derived from.  Note that the prediction filter designed by Gulunay's 

method mentioned above produces forward prediction filter z0 .  The pseudo FBPF that 

will be derived from it is identical to the  

true FBPF  

 z0.5 0, ,z0.5 0
*
0 4  

in this case (but not so for other cases).   Note that for one event input of any length 

larger than 3, the filter is always the same.  This illustrates the insensitivity of the filter to 

the gate length.  Note also that for noise free input, the filter coefficients do not vary 

significantly  if the length  of  the filter is increased. This is due to  the positive 

definiteness introduced to the normal equations by the windowed nature of the 

auto-correlations.    

 One dimensional true FBPF filters can be also shown to preserve the correct 

output amplitude level in inputs which show smooth variation of amplitudes by spatial 



direction.  For example, a dipping  event with exponential amplitude variation in the 
space direction can be represented as (1, a,a2,...,aN-1) where a=eαz0.   It can be shown 

that the 3-point pseudo FBPF obtained from Yule-Walker approach is   

 z  0,  ,z
)(S

)(S
 e0.5 0

*
0

1-N

2-N


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where Sn = 1 + e2α + e4α+ ...+e2nα . This filter produces large errors when exponential 

variation is large and when N is small.  For example for α=1 and N=30 we get 43 

percent prediction error in all samples of the output (excluding the two samples at the 

edges where it is worse).   On the other hand true FBPF designed as prescribed above 

is 

 z  0,  ,z
e+e

1
0.5 0

*
0-

6 

and produces no prediction error except at one sample at each end of the window.   

This analysis suggests that a true FBPF will be more desirable for data with spatially 

varying  amplitudes.   

 

 

 

TWO DIMENSIONAL FORWARD BACKWARD PREDICTION FILTERS FOR 3-D 

POST STACK DATA 

 Multi channel least squares filters have been used in the geophysical industry for 

sometime.  However, the use of two dimensional prediction filters for post stack random 

noise reduction is quite recent (Chase 1992).  Multidimensional digital signal processing 

has found many applications in electrical engineering field.  A number of papers are 

available on two dimensional prediction filters (IEEE, 1986). Such filters can be 

designed as causal, semi-causal or noncausal filters. We chose the noncausal (2-D 

FBPF) approach because of the reasons explained above for 1-D filters.   Then,  every 

output point is predicted by using a mesh of points around it excluding itself. We 

choose filter dimensions to be odd in each direction and use one set of normal 

equations for all the filter coefficients.  The resultant filter coefficients have conjugate 

symmetry around the origin Therefore the filter is zero phase in the spatial directions 

and takes the follwoing form for 3x3 case:  
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For example,   3x3 prediction filter derived from a dipping plane gives   
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where w0 is defined similar to z0 but for the second space dimension.   The matrix 



involved in the solution of the normal equations is Hermitian, positive-definite. The 

equations can be converted into real form and solved by a real matrix solver like Gauss-

Jordan method.  

 

 WHAT IS SO GOOD ABOUT TWO DIMENSIONAL FILTERS?  

 Two dimensional filters (let us call them 1-pass prediction filters) are generally 

more costly than two passes (inline and crossline) of one dimensional filters. One may 

naturally ask if there are other benefits obtained by two-dimensional filters. 

Chase(1992) correctly pointed out that for certain structures such as cylinders 2-D 

filters do a better job than 1-D filters.  We would like to extend this conclusion by saying 

that as long as geology does vary along one of the axis (x or y), and when noncausal 

forward-backward prediction filter design is used, even the shortest filter (3x3) is 

sufficient to predict such geology with zero prediction error (in the absence of noise).  

 Some of such surfaces are given in Figure 1.  For such surfaces data correlates 

in one dimension perfectly and the filter pulls most of its information about data from 

that dimension.   When the input is a made of fan of dipping planes passing through 

one common axis we see that the prediction will fail if the length of the 1-D filter is less 

than the number of planes present and if prediction is done perpendicular to the 

common axis.  On the other hand,  a 3x3 noncausal filter predicts this structure 

regardless of the number of dipping planes it may contain.  It is also worth mentioning 

that a  3x3 noncausal filter passes vertical faults oriented along x or y direction with no 

distortion.    If the faults are oriented in an oblique direction in the x-y plane a longer 

filter such as 5x5 will be needed and sufficient.  

 A simple 45 degree 3-D fault model is studied in  Figure 2.  We compare a 2-D 

filter application to two-   pass 1-D  filter application  and observe that the  2-D filter 

preserves the fault where the two-pass 1-D filter application does not.      

 

CONCLUSIONS       

 We have shown that true FBPF operators are less sensitive to the size of the 

gate they are derived from than pseudo FBPF operators.  We have also shown that 

two-dimensional true FBPF operators are more compact than one dimensional filters 

needed for a two-pass run.  This means two-dimensional filters are more likely to 

preserve spatial resolution.  Any number of dipping  planes with conflicting dips, and 

even a complex geology can be handled by a 3x3 operator when geology does not vary 

in one direction.  2-D true FBPF operators preserve faults along in-line and along cross-

line directions.  Slightly longer operators, like 5x5, are needed when faults lie in an 

oblique direction.   We have also shown that output levels of a true FBPF are more 

correct than that of a pseudo FBPF for an event exhibiting lateral amplitude variations.   
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Figure 1 Come exactly predictable surfaces 

 

Figure 2  Comparison of a 5x5 true FBPF application (gate size 40x40) to a 5-point  



two pass (gate size 40) pseudo FBPF application. Gate overlap is 33 percent. 

 

Figure 3  Comparison of a one pass (FXY) prediction run to a two-pass (FX follwed by 

FY) prediction on a faulted geology. 

 


