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OZET o
Rezidiiel dizeltme (RNMO) ve toplama iglemine

dayanan parabolic Radon donagimi Iine_;er duzeltme
(LMO) ve toplam islemine dayanan Ilpeer Radon
dénigumiyle yakindan ilgilidir. Her iki islem dei f-)_(
bélgesinde uygulanabilir.  Bu bélgede RNMO, Ussu
uzaklidin karesiyle orantil karmagik sayilardan olugurken
LMO Gsst uzakhdin kendisiyle orantili kﬂl’l’"(.'laflk
sayilardan olusur. Verilmig her bir frekans igin d(‘jr!usum
katsayilarn, uzakiik {izerinden toplam yapma.k. yerine eq
kiiglk kareler yontemi kullanilarak e!ge e_dl!lrs.e elde_k[
kayidin igerdigi lineer ya da parabolik egimli bnlg]ye en iyi
ekilde uyan bir model elde edilebilir. Bu tekniklerden
RNMO kullananina Radon tau-p ve LMO kullanlna‘ Radon
tau-g adini verilebiliriz. Bu teknikler kayntlar“dakl ltekrar
eden bilgilerin {multiple) yok edilmesinde ve dizenli ya da
diizensiz  gurditindn giderilmesinde kullanilabilirler.
Ancak, tekniklerin etkinligi olaylann déniigim sirasinda
ne kadar iyi ayirt edilebildiklerine baghdir. Bu mz';xkale
Radon dénigiminin ayirrma glicini incelemektedir. 3
Eldeki problemin belirsiz (singdler) otmad:g!
durumlarda Radon tau-p ve Radon tau-q iglemleri eldek'f
matrisin tersi alinirken kiiglik miktarlarda beyaz glrditd

kullanabildiklerinden, bu hallerde bu islemlerin aywrma -

glgleri klasik tau-p (lineer dizeltme ve toplam_)‘ ve 'I_(Iasik
tau-q (RNMO ve toplam) iglemlerinin ayirma gu<;|er|nden
ustindar.  Klasik tau-q i§|eminin sidelobla"ri "Frgsnel_
integralleriyle yakindan ilgili olup buyukﬂlulde.r.l
azimsanamiyacak kadar yiksektir. Radon dénugumu
belirsizlik (singularity) durumlarinda bile bu sideloblari
etkin bir gekilde bastirmaktadir. Bu nedenle_Radon tau-q
isleminden gegmis kayitlar klasik tau-qigleminden gegmig
( normal toplam) kayitlardan daha temizdirler.

ABSTRACT

The parabolic Radon transform based on residual
normal moveout(RNMO) and stack is comparable to the
linear Radon transform which is based on linear
moveout(LMO) and stack. Both of these processes can
be implemented in the f-x domain. In this domain,
RNMO involves complex exponentials with arguments

‘which are quadratic in offset while LMO involves

arguments which are linear in offset. When the
coefficients of the transforms at each frequency are
obtained through a least squares error constraint rather
than through straight summation in the frequency
domain, a best fit is obtained to the dips or the residual
moveout existing in the data. We will use the term

Radon 1-g for the one which involves RNMO and the -
term Radon 1-p for the which involves LMO. Multiple

elimination and/or coherent as well as random noise

suppression can be achieved using either one of these

Radon transforms. However, the effectiveness of the

processes depend on how well the events are resolved

in the forward domain. This paper studies the resolution

of the Radon transforms. The resolution of either of

the Radon r-p or the Radon 7-q is better than that of the

classical 7-p (slant stack) or the classical 7-q (RNMO and

stack) only when the problem at hand is non-singular to

allow the amount of white noise used in the matrix

inversion to be small. The side lobes of the classical

RNMO and stack are related to the Fresnel Integrals and

are significant in magnitude. The least squares error

nature of the Radon r-q suppresses these side lobes

significantly, even in singular cases. Therefore, the

Radon r-q gathers are always cleaner than those of the

classical r-q.
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INTRODUCTION

The classical r-p method is well established (
Phinney et al.,1981 and Tatham,1984 ). In simple
terms, it is the modeling (inversion) of data in terms of
assumed number of linear events (p values). The
forward transform is achieved by performing linear
moveout and then stack (slant stack) in the t-x domain.
A convolutional operator known as the Rho filter, which
is equivalent to a linear ramp in the frequency domain
balances the spectrum of the forward transform. A
common application of r-p transform is to manipulate
the forward transform, such as muting undesired dips,
and then doing the inverse transform. The inverse
transform is also performed using linear moveout.

Thorson(1984) imposed the least squares error
constraint on the reconstructed data and developed
Slant Stack Stochastic Inversion. He also generalized
stacking velocity decomposition into Velocity Stack
Stochastic Inversion. Hampson(1986) was able to
implement Thorson’s method efficiently by using NMO
corrected data, the parabolic approximation to residual
moveout, and the f-x domain.

Hampson's technique imposes the least squares
error constraint on the model constructed for the data at
each frequency. Hampson(1987) identified his
approach as the Discrete Radon Transform which is
explored by Beyklin (1987). Yilmaz({1989) extended
Hampson's technique to pre NMO data by eliminating
NMO application through the use of t-t* transform.

Seeing the success of Hampson's technique in
suppressing noise on prestack gathers we have
developed its linear version {Radon r-p) and used it for
noise elimination. During the development we have
assumed that the Radon r-p should be better than the
classical 7-p because of the least squares approach.
This paper is the result of questioning that assumption,
and another which is counterpart to it: /s Hampson's
method really better than the residual moveout and
stack?. These questions led to the observation that the
classical results are obtained from the least squares
technigues when a large amount of white noise is used
in the complex Wiener-Levinson algorithm and this in a
sense unifies these methods.

In what we call the Radaen r-p, we use parameter i

p for linear moveout

t=t+px  (linear move-out) M

and therefore refer to Hampson’s method as the Radon
r-g ‘where q is the parameter for residual (parabolic)
moveout

(2)

t=1+gx? (residual move-out)
q

In the Radon r-p method the slant stack inverse in
the f-x domain is found using an approach parallel to
Hampson's Inverse velocity stack. The base functions
in the Radon 7-p are & 2 '?* instead of &2 '9**.
Because of its least square nature the Radon r-p might
be referred to as the F-x domain least squares T-p.

THE SLANT STACK IN THE F-X DOMAIN

Most time domain implementations of the r-p
transform require interpolation of the data from discrete
time samples to the time values implied by Eq. 1. In the
forward transform, linear moveout is applied by the
amount -p.x and the results are summed. Division by
number of elements normalizes the summation. Since a
time shift is a linear phase shift to the data in the
frequency domain, the frequency response of the r-p
trace at frequency f will be

Nl'
c(fp) =Tv1" Y D(fixe 4 (3)
x k=1

where N, is the number traces in the data, x, are the
offsets, and D(f,x,) is the Fourier transform sample; kth
trace, frequency f. The inverse Fourier transform of c(
f, p ) is the slant stack trace or the 7-p trace. Note
that there is no Rho filter in the classical 7-p trace as
defined here.

The resolution of the classical r-p process can be
studied as a function of frequency if we use a flat event

“attime ty :
c(fip) = €™ alfp) @
where
18 :
alfp) = —Y. e u (5)
N.ia
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Note that the sign convention followed
throughout this paper is to use a plus sign for the
exponent in the forward Fourier transform and a minus
sign in the inverse Fourier transform. Therefore the
Fourier transform of a spike at time t, is & 2”1,

If the trace offset increment is a constant {dx), then
the sum in Eq. 5 becomes the sum for a power series.
And its sum is equal to

1 [sinyNp8x)| 1 IsingN,89| o Isin(rst)
N,

x

c(f.p)

(6)

as long as the value of fp éx is not equal to an integer
f,p, dx, = f, o1, = 0,1,2 ...

where subscript a stands for afias and 6t = p éx is the

dip per trace, and  X,,...=MN; éx is the spread length. At

such values of f, , p, and d8x, the value of the sum is

exactly equal to one:

clf.p) =1

The function given in Eq. 6 occurs in many branches
of science. For example, the magnitude of diffracted
light from a grating of N, elements with element width
&x is given by the same formula where &t is a parameter
related to the angle measured from the direction of the
incident light beam. The same equation is also used in
seismic data acquisition in finding the response of a
seismometer array to an incoming plane wave ( Graebner
1960, Holzman 19263).

If viewed as a function p or ét, the function in Eq. 6
determines the resolution of the process. To find the
half power point of the response involves trigonometric
equations. Instead, the first zero crossing value given by

3= N, 3t= 7

=

sin(/pdx)| N, [sin(nfd))| Xopa [sin(f7 W]

can be used.
Note that &T is the linear moveout at the far offset.

The plot of Eq. 6 as a function of frequency is given
in Figure 1a for three dips : dT=0, dT=10 ms and
dT=20ms and for a 12 trace flat event with zero dip.
The trace spacing is 500 ft and the maximum offset is
6000 ft. Figure 1b is a similar plot for dT=50 ms and
points to the aliasing at 240 Hz.

The plot of Eq. 6 as a function of 6T at 15 Hz is
given in Figure 3. The first zero crossing occurs at 67
ms. Two dipping events with far offset linear moveout
difference less than this amount are considered to be
unresolvable. This is known as Rayleigh’s Criterion in
Optics ( Born and Wolf,1980 ).

THE RADON r-p

The Fourier transform of a record with a single event
at intercept time t, and slope p is €2 '™ elZnirx,

Therefore we model the dip and offset dependent |
variations in the input data in terms of base functions

g2 Px  When the least squares error condition is used
for f-x domain 7-p, we require that the model
coefficients to fit the data in the least squares sense at
each frequency:

N,

x H’
Y, }D(f.xx) -3 s(hp)e? "“r —minimum (8)

k=1 i=1

Then a system of normal equations is obtained at each
frequency for N, unknown ( model ) coefficients s,
=s(f,p,) (n=1,,..,Ny},

N!
)_“1, R, 5,=8n (9)

Rs=g

where N, is the number of dips the data are assumed to
contain and




RADON TRANSFORM

RADON DONUSOMO

N'.I'

N,
1 _2xflp,pn
R = Rfpup)= -3 P00 (10

We are modeling (inverting) the data in terms of N,
dipping events with p values ranging from p, 10 Dy,-

An important observation is that the right hand side
of Eq. 9 (given by Eq.10) is the classical r-p response

defined by Eq.3
glfp) = c(fp) - Kh2)

The R matrix on the left hand side is independent of
the data, and its inverse is like a deconvolution operator
for the solution:

s=R1¢ (13)

R’ operating on the classical 7-p response
deconvolves the effects of finite apertures resulting
with highly resolved output in p direction.

When the dip increment at a particular frequency is
chosen to be constant and is &p, the matrix becomes
Hermitian Toeplitz (Kostov, 1989). Then, the main
diagonal is all ones and the nth lower diagonal is given
by

N,

R =— €

1 ~72nfn{dp) . (14)
N, =

Then, the linear system of equations given in Eq. 9
can be efficiently solved and it is computationally
feasible to use large N, values in modeling the data if
necessary.

Important observations are:

a). R, diminishes in magnitude as the spread length |

X, =N, "6x increases. When X, goes to infinity the

R matrix reduces to a unit matrix unless aliasing occurs.
When aliasing occurs, the R matrix becomes singular
and can not be inverted unless a large amount of white
noise is injected to its main diagonal. We will see in the
next section that when white noise is large, the Radon
7-p and the classical r-p results agree. Therefore, the
infinite aperture limit of the Radon r-p is equivalent to
the classical 7-p.

b). R, array is the same as the c array of the flat
event given by Eq. 5. Therefore Eq. 9 has to return a
perfect solution { a spike) for the s array. That is, the
Radon r-p can produce the ideal model, the infinite
aperture solution, from finite apertures if the matrix to
be inverted is non-singular.

EFFECTS OF WHITE NOISE ON THE RADON r-p

Various conditions cause the R matrix to be singular
{ Kostov, 1989 ). Aliased frequencies ( or p ranges )
have already been mentioned in the previous section.
The case of frequencies around zero Hz is a good
example of the numerical problems singularities cause.
At zero Hz the matrix becomes all ones and is impossible
to invert. To decrease the arithmetic problems caused
by such singularities, it is common to add some white
noise to the main diagonal of the R matrix, changing it
from Ry=1 to R;=1+n where n is a small positive
value. To eliminate the amplitude loss this modification
will cause on the solution array s, the right hand side of
Eq. 9 can be multiplied by 1+n. This is equivalent to
keeping the main diagonal of R equal to 1 but dividing all
other diagonals by 1+n. With this scheme an
algorithm can be obtained which gives s = ¢ as white
noise parameter 7 goes to infinity. Therefore the Radon
7-p reduces to the classical r-p as the added white noise
goes to infinity.

Because of cost considerations the matrix inversion
is usually attempted without calculating the determinant
of the matrix being inverted. Therefore the usual
practice is to inject a small and user given white noise
whether the matrix is singular or not. When the matrix
is not singular and the white noise happens to be small,
then this is the best solution (in the least square sense)
that can be constructed from the assumed dips. On the
other hand, if the value of white noise is small and the
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case is singular, then the solution at that frequency is
unreliable. Since a diagonal which is not a main
diagonal and has a magnitude equal to one gives
singularity, some of the singularities can be eliminated
by varying the noise parameter as a function of |R,|
where m is the index of the non-main-diagonal which
has the largest magnitude.

To understand the effect of white noise on the Radon
r-pl or r-q } solution we used the same record that
contains a flat event at time t and model it in terms of
two dips: one is the correct dip ( dip, =0 ) the other one
is an incorrect one ( dip,=dt ). The normal equations

become
[1 +n a’ I‘ﬁ]=eﬂ%(1 +n)[1} (15)
a 1+n Sa a

P

where a is given by Eqg. 5 and &’ is its complex
conjugate.

The determinant of the matrix is

D=(1+n)? -a'a (16)

and the analytical solution for the Radon r-p can be
shown to be

[s‘} N fz"_ﬁ“[“ St *")“'“] (17)

5z D (1+n)na

We made three observations from this simple case:

a). As the white noise parameter goes to infinity, we

obtain the expected clagsical r-p solution
(a

311 oo |1 (18)

Sz

b). As the white noise parameter goes to zero, we
obtain the ideal solution

st w{‘] {(19)
[]g i

For N, dips we would get

84 1
F 0
2
0
L e (20)
Sy, 0

That is, no energy leaks from the correct dip (dip=0) to
the incorrect ones when a zero value can be used for the
white noise parameter.

c). At zero Hz, a’.a =1, and we obtain

5 =32=e’2"ﬁ°12:—: . (21)

It can be shown that at zero Hz, for N, dips we get

1
S.. = S2 T opee = SN' = eﬁxﬁo N—.':;n; - (22]
P

This means that it is not possible to determine to
what dip DC energy belongs and therefore the Radon 7-p
distributes that energy equally between all dips.

The spectra of the Radon 7-p traces when Np=2 and
for the record used above is given in Figures 2a through
2§ for various white noise levels. Two dips, dT=0and
dT=10ms at X, =6000 ft are used in modeling the
data. We observe the following
a). energy around zero Hz is equally shared between
both dips,

b). as the white noise percent goes to zero the trace
with dT =10 ms looses its energy to the trace dT=0,
c). as the white noise increases(Figure 2a) the same
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solution as the classical tau-p is obtained(Figure 1a)

Figure 4 illustrates similar points using 7 dips to model
this data instead of 2, and compares the results to that
of the classical r-p. The dip increment used is 36 ms at
the far offset. Note the resolution increase when the
white noise is small. Also note that the true amplitude
nature of Radon r-p is lost as the amount of injected
white noise increases. In the very high noise limit (
10000 % ) we obtained the classical r-p result. The
classical r-p is not a true amplitude process since it
produces energy at the dips where data does not contain
any energy.

Using 41 dips given in Figure 3 for the Radon r-p results
with a singularity since the number of unknowns (
N, =41 } is larger than the number of equations { N, = 12
) in the problem. We observed that using a moderate
white noise level such as 1 % eliminates most of the

numerical the problems such singularities cause, but the
results are no different from those of the classical r-p.

For the synthetic record used above the spectrum of the
forward transform trace for p=0 is flat for the classical
7-p (Figure 1a). The Rho-filter which is a multiplication
of the spectrum by frequency (i.e. a linear ramp) is later
imposed on the classical forward r-p transform
(Tatham,1984). The p=0 trace of the Radon 7-p
shares some of its energy with other p traces when the
injected white noise is nonzero as described by Eq.22
and as observed above. We find that as the number of
dips used to model the input data goes to infinity, the
amplitude spectrum of the p=0 trace of these
synthetics becomes a line implying that Radon r-p
approaches to the Rho filtered 7-p as the number of dips
used to model the data (Np) becomes very large.

THE RESIDUAL MOVEOUT AND STACK IN THE F-X
DOMAIN

The residual moveout after NMO, followed by stack can
be done through the f-x domain parallel to Eq.3:

N, P
clfia) = 3. Dlfix)e ™ =

k=1

where D{ f, x, ) represent the Fourier transform of the
NMO applied data at offset x, and q is the residual
move-out parameter. q can be calculated using

1 1 1
=|—- — 24
q { V2 sz] 21, (24)

where V, is the velocity of the hyperbolic event, V,,, is
the NMO velocity, and t, is the zero offset time of the
event. The inverse Fourier transform of ¢( f, q )} is the
RNMO + stack trace (the 7-q trace).

The resolution of the r-q trace can be studied as a
function of frequency or moveout using the same flat
event as used previously. The flat event has q=0. Then

c(fa) = €7 bifa) (25)
where
1 HK 2 o
blfig) = -3 e 28}
xk=1

This sum behaves like the Fresnel Integrals

1 4 [12 -
f cos(n—)dU .
A 2

v (]2
in(n—)dU
!;sn(n 2)

which are both used in optics for the diffraction of light
from a straight edge( Born & Wolf, 1980). In this
application '
where
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V= (N,-1)dU (27)
du = 2 8x fa (28)

and N, =N, for offend shooting and N, =N, /2 for
split spread. Since each of the Fresnel integrals oscillate
around the limit value of 0.5 as V goes 10 infinity, the
sum in Eq. 26 has a frequency and moveout dependent
limit:

0.5/1 + j| 0.353

{29)
2N, 8x \fa VfoT
where oT is the residual moveout at far offset:
3T =g (N, 82 =g X:.,,, ) (30)

The plot of Eq. 26 at 15 Hz and as a function of éT
is shown in Figure 5. Note the significant side lobes in
the figure. Only at high frequencies or at moveouts that
differ from that of the event or for large spatial apertures
will the bias in the oscillation point be small.
Otherwise, the classical 7-q will exhibit significant side
lobes, which explains why a single event shows up on
many velocity panels in standard CVS panels.

THE RADON r-q

When the least squares error constraint is imposed on
the f-x domain 7-q at each frequency, we obtain
Hampson’s method(1986) which we call Radon 1-q.

When the q increment (8q) is kept constant, a set of
normal equations with Hermitian Toeplitz form are
obtained as before. The only difference is that dq takes
the place of the parameter &p and x? takes the place of
X

N'
2, B 0 = &n (31a)

n=1

Rs =g

where N, is the number of g values the data is assumed
to contain and

Nt
g = 81 % 21:D(f,x,;)e"’2"”‘1-r'sz {31b)
x k=
and
1 N % (3!:.)
R,, = R(fqw9,) = FE; R
xk=

The diagonals of the R matrix in the parabolic case are

NX
R, _,1_2 o TRemda? ) (32)
N, i

X

| again make the observation that the right hand side of
the normal equations given above is the classical 7-q
transform:

glfa) = <(fia) (33)

Similar considerations to the ones in 7-p lead to the
following conclusions:

a. The large aperture limit of the Radon r-q is the
classical r-q.

b. The high white noise limit of the Radon r-q is the
classical 7-q.

¢. The energy at zero Hz is equally shared between all
curvatures and therefore that value goes to zero as the
number of parabolas used in the model goes to infinity.
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Figure 6 compares the Radon 7-q to the classical 7-q
using five different white noise values. Note the
resolution increase and the side lobe suppression in
Radon 7-q when the white noise used is small. When
the matrix is singular a moderate noise value needs to be
used. Even in singularity cases side lobe suppression
takes place in Radon 7-q, though the resolution is no

different from the classical 7-q.

CONCLUSIONS

The least squares 7-p and the least squares r-q canbe
implemented in the f-x domain in similar fashions. The
infinite aperture or infinite white noise limit of both
processes yields classical counterparts, the slant stack,
and the residual moveout and stack. When the matrices
to be inverted are non-singular, both methods eliminate
the smearing effect that finite apertures cause, giving
highly resolved (infinite aperture type) results. When
matrices are singular Iafge white noise values must be
used. In such cases Radon 7-p produces a result which
is almost identical to the classical 7-p. The Radon 7-q,

when used with such white noise levels suppresses the

side lobes observed in the classical residual move-out
and stack, yet does not sharpen the main lobe, and
therefore has the same resolution as the classical
residual moveout and stack.
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Figure 1a: Spectra of the classical
tau-p traces for 12 trace flat event

Magnitude ( dB )
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Figure 1b: Spectrum of a classical
tau-p trace for 12 trace flat event
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Figure Zé: Spectra of the Radon
tau-p traces at Noise=10000 %
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Figure 2b: Spectra of the Radon
tau-p traces at Noise=100 %

Magnitude ( dB )

O +

—-50 IIIIIIIIII [J||||\\||l||‘||\\\\i
0 Frequency ( Hz ) 250

= dT=0 —+— dT=10 ms

dx=500 Nx=12 Xmax=6000 dT=p.Xmax Np=2

| |




RADON TRANSFORM

RADON DONUSUMU

f———

Figure 2c: Spectra of the Radon
tau-p traces at Noise=10 %
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Figure 2d: Spectra of the Radon
tau-p traces at Noise=1 %
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Flgure 2e: Spectra of the Radon
tau-p traces at Noise=0.1 %
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Figure 2f: Spectra of the Radon
tau-p traces at Noise=0.01 %
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Figure 3: Classical tau-p response
at 15 Hz.
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Figure 4: Radon tau-p response
at 15 Hz.
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Figure 5: Classical tau-g response

at 15 Hz.
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Figure 6: Radon tau-q response
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