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OZET

Alsilagelmis iz analizi tekniklerinde zaman
pencereleri ve bu pencerelerden tiiretilebilen "semblans”
toranden olgGmler kullanihr.  Yeni  bir 6lgim qla_n
kovaryans 6lgiminin kullaniimasiyla hiz analiznmr!
zaman ve hiz dogrultusundaki aynm guga kayltta-ki
glrdltinan ¢ok kiglk olmadigi hallerde artinfabilir.
Kayitlardaki girtltindn ¢ok az oldugu du:urplarda.
teknigin zaman yon(ndeki ayirma glich hiz Yoqunc!ek:
ayirma gicilyle geligmektedir. Ozellikle birbirleriyle
etkilesecek kadar yakin iki olayn birarada oldugu
durumlarda ne hiz ne de zaman dogru olarak Slglebilir,

Kovaryans matrisinin elemanlari iki ize ait iki pegcerenin
kroskorelasyonundakisifir gecikmenoktasinindegerinden
olugur. Bu nedenle, kovaryans &lgimi erlerjisi
indirgenmis kroskorelasyon toplami ile yakindan baghdir.
Semblans ile enerjisi indirgenmis kroskorelasyon toplami
birbirlerine yakindan bagli olduklarindan sadece semblans
kullanilarak ta kovaryans &lgiimd tanimlanabilir. Bu
sekilde Gg ayn tiirli kovaryans 8lgimi tanimhyabiliriz.

Her @i Blgtim de benzer Gzelliklere sahip olup bu
dlgimlerle yaptigimiz deneyler agadidaki sonuglan
vermektedir; a)- Sinyal/Girdlitd orami  ylksekken
Sinyal/Gurdlth oranini temsil eden terim yeteri kadar hiz
aynmi saglar, b)- Sinyal/GrGitd orani digikken hiz
ayrnimini logaritmik terim saglar, ¢)- zaman ve hiz ayirma
yetenegi kullanilan zaman penceresinin biyUklGgane,
kayittaki giirGitd miktarina, bilgi islemde kullamian beyaz

glriltdye, ve birbirleriyle etkilegen olaylarin var olup

olmadifina baghdir, d)- bilgi iglemdeki beyaz griltd
kayittaki gUriiltd gibi davranmaktadir, e)- logaritma
teriminin GssG bdy(k segilirse zayif olaylan yok etme
tehlikesi olugur. . £ s

ABSTRACT

Traditional velocity analysis techniques use time gates

and attributes such as semblance to detect event
velocity and zero offset time. The use of a recent
attribute, covariance measure (CM) which is defined
through the use of the eigenvalues of the covariance
matrix, increases the resolution in time and velocity as
long as the amount of noise in data is not small. If the
noise is extremely small then temporal and velocity
resolutions are in conflict and for interfering events
neither velocity nor time is accurate.
Each element in the covariance matrix is the zero lag of
the cross correlation between two gates belonging to a
trace pair and therefore CM is related to energy
normalized cross correlation sum. A covariance measure
can be defined from energy normalized cross correlation
sum. It is well known that semblance and energy
normalized cross correlation sum are related. Therefore,
a covariance measure can also be defined from
semblance and is the most economical of the three
methods.

Experiments with covariance measure further show the
following:

a)-When signal to noise ratio is high the SNR term in CM
is enough to give high velocity resolution, b)-When
signal to noise ratio is low the log term in CM provides
resolution, c)-Temporal and wvelocity resolution is
affected by the time gate size, data noise, processing
noise(white noise) and if there are interfering events or
not, d)- processing noise acts like data noise, e)-Large
exponent for log term is likely to suppress weak events.
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INTRODUCTION

Velocity analysis techniques that use temporal gates
map the time-offset plane into the time-velocity plane by
assigning a coherency related attribute to the gate
center time (t} and scan velocity (v).

Semblance, unnormalized cross correlation sum,
statistically normalized cross correlation sum, energy
normalized cross correlation sum (ENCCS) and some
other attributes such as mean amplitude in the gate have
been used (Neidell and Taner, 1971). Recently, new
techniques which increase the resolution of the
attributes have emerged: Sguazzero and Vesnaver(1986)
and Sguazzero et al.(1987) used a complex coherency
measure derived from statistically normalized complex
cross correlation sums, and Key et al,(1987) as well as
Biondi and Kostov(1988) used the eigenvalues of the
covariance matrix. Following the work of Key et al,
Key and Smithson(1990) chose "covariance measure”
{CM) as the attribute. CM is defined by them as the
product of two terms: signal to noise ratio (SNR) and a
weight (W) which is the measure of the inequality of the
eigenvalues of the covariance matrix. They reported
CM to have better resolution than semblance and to be
less sensitive to the statics problems in data. Also,
"signal subspace” concepts such as dynamic modeling
of the noise field were interesting. Because of such

appealing properties of the covariance measure the -

present study was undertaken.
During this study several facts emerged:
a)- Signal to noise variance ratio defined by Key and

Smithson({1990) is the same as signal to noise energy

ratio calculated from semblance or from ENCCS.

b)- For high signal-to-noise ratio, the apparent high
resolution in CM is mainly due to the use of signal to
noise ratio, but not due to the use of eigenvalues per
se. The resolution of the signal to noise ratio obtained
from the semblance is same as the resolution of the
covariance measure.

¢)- For low signal-to-noise ratio, the resolution comes

from the weight W. However, this weight which is
obtained from the eigenvalues is not numerically stable
for low signal-to-noise ratio and can give spurious peaks.
Therefore, precautions taken to eliminate the numerical
problems have a strong influence on the outcome, W

factor is equivalent to raising semblance (or ENCCS) to

a power such as N,.
d)- For high signal-to-noise ratio, side lobes of the

wavelets give as high coherency values as the main
lobe, but at different velocities from the main lobe. The
velocity spectrum forms a ridge like shape. Due to this
effect (Ridge Effect) both time and velocity resolution is
lost. Especially for two or more interfering events,
peaks don’t occur at the right places in v,t plane. CM
suffers from this effect as well.

e)- ENCSS is intimately related to the eigenvalue
technique of CM, and a theoretical CM can be obtained
from ENCCS without solving for the eigenvalues.

f)- Since ENCCS and semblance measure very much
the same quantity, CM can be calculated from the
semblance as well by replacing ENCCS with semblance,
allowing us to generalize the covariance measure
function to semblance as well as ENCCS. Obviously,
semblance is the most economical.

g)- Both ENCCS and semblance calculate signal and
energy at each scan. As long as we assume that there
is one event at each scan trajectory and devise our
formula accordingly(Eq.10 or 12) there is no extra
benefit derived from signal space related concepts
(eigenvalue technique) such as dynamically calculating
the signal and noise energy. SNR derived from
semblance or ENCCS already does this.

Before getting into more details, an introductory review
and some definitions are in order.

REVIEW
Gated Velocity Analysis Techniques
The use of temporal gates around the time of interest
increases the reliability of the attributes derived from
data. All of the references cited above use such gates.
During the analysis, a subset of data around the Dix
hyperbola

x2 (1)

Ly =
v2

tg? 4

is taken from the data matrix and is analyzed. Gate
center times scan the time axis with a time increment
which is usually half the gate length. Velocities scan the
velocity range with constant or varying increments. For
improved resolution, small increments of gate center and
velocity are necessary. Picking a gate of data from
digital samples requires interpolation. Nearest sample
picking, linear interpolation , quadratic interpolation or




static shift techniques such as Lagrange interpolation
can be used. Quadratic interpolation is used in the
examples given in this paper. The data matrix has N,
rows and N, columns where N, is the number of samples
in time direction and N, is the number of traces. The
data matrix {a; ) is used to derive a single attribute such
as semblance. Afterwards, the attribute is assigned to
the attribute array Alt,v), at gate center time t and the
scan velocity.

Semblance

Semblance s is the ratio of output energy (the variance
of the stack) to the input energy (variance of the CDP)
can be expressed as :

Hﬁ
...l. w2
ATy Nf\: . (2)
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where w, is the amplitude of the i-th time sample of the
stack wavelet (mean amplitude along offset direction).
When signal is uniform along the offset direction and the
noise is uncorrelated from trace to trace the signal to
noise energy (or variance) ratio, SNR; can be obtained
from semblance using

(3)

The square root of SNRg is the signal to noise RMS
amplitude ratio ( SNR,,, ).

Covariance Matrix and the energy normalized cross
correlation sum

Covariance matrix ®= (¢ ;) is made of the zero lag
values of the unnormalized cross correlations between
various gates,{ trace i and trace j):

Ny
2
b =—Y a, a n (4)
i NCKEI ‘u e

The dimensions of the covariance matrix are equal to
fold of the CDP, N,. Note that each off-diagonal
element in the matrix is a measure of the signal energy
and a sizable time gate ( N, >> 1 ) is needed to
statistically stabilize the estimates. For small signal to
noise ratio, and for band limited noise, the noise may
correlate with signal, giving inconsistent off-diagonal
elements in the matrix. Therefore, a further stabilization
of the signal estimate is obtained by taking the average
of all off-diagonal elements in the matrix:

1
Cmmmgts - ®

The elements in the main diagonal of the covariance
matrix are the auto correlation zero lag values and show
the total energy { signal plus noise) in each trace of the
data matrix. In the case where the total energy in each
trace is approximately equal, then a better estimate of it
is done by averaging the elements in the main diagonal:

Nl
1
Aa=1%%¢ ) (6)
v, 2

Therefore, in the notation of this paper, the energy

normalized cross correlation sum of  Neidell and
Taner(1971)becomes
g
€=3 (7)

Covariance Measure

The basic assumption Key and Smithson (1990) make
is that there is only one event per scan( one event per
data matrix). Even if there are indeed more than one
event, at the velocity of one of the events, all others are
incorrectly moved-out and appear as noise. They define
covariance measure from the eigenvalues of the
covariance matrix defined above. Therefore for the
correct velocity there is always one major eigenvalue,
even if there are more than one event. Tying the
attribute to the existence of an outstanding major

Il
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eigenvalue helps and covariance measure is defined as
the product of two terms:

CM = SNRy W ()

where SNR; is the signal to noise {energy) ratio defined
from the eigenvalues, and W is the weight factor related
to the inequality of the eigenvalues. Noise variance is
defined as the mean of all the eigenvalues except the
major one:

"l
R {9)
on Nx—l z; l_{

where N, is the number of traces in the analysis.

The largest eigenvalue is considered by Key and
Smithson(1990) to be the sum of the signal and noise
variance

Ay=0? + 0 2 (10)

Therefore SNRg is defined (Key and Smithson, 1990) as
A-0?

# (11)
0,2

SNRj =

Although Eq.10 and 11 seem to be correct for poor SNR
case, they give larger values than SNRg obtained from
Eq. 3. Correct definitions are given by Equations (12)
and (13) which should replace Eq.10 and Eq.11

A,=N, 0,2 + 07 p (12)

_(A-0,2) /N,

s ; (13)

SNRg

This is because the major eigenvalue of an all ones
matrix with dimension N, is not equal to one but equal
to N,. :
The weighting coefficient W is defined as the N, th
power of the natural logarithm of the ratio of the
arithmetical mean to the geometrical mean

14
w=p™s (14)

with
5)
=1n(2) (1
P g
where the arithmetical mean a is given by
i
= (16)
a , E Ay
and the geometrical mean g is given by
(17)

Key and Smithson use a partial stacking scheme and so
reduce the fold of the CDP ( N, ) by some factor, for
example 6. Note that raising rho to a large power, like
48, would give serious numerical problems, if the partial
stacking route is not chosen. Similarly, the geometrical
mean of 48 numbers is likely to give numerical
problems.

TEST RECORDS

To make the comparison easy with Key and Smithson’s
results, | have created my synthetics with the same
geometry:

Figure 1-A is a 48 trace record at 4 ms sample rate,
with one event at 2.000 second with velocity 2700 m/s.
Offset increment is 30 m, offsets range from 30 m to
1440 m. The event has a band limited (10-60 Hz) zero
phase wavelet of 160 ms duration (cosine taper is 80
ms on each side). The record contains a very small
amount of band limited noise( 10-60 Hz) ( SNR
calculated aver a gate length of 44 ms around the main
peak of the wavelet is approximately 1600) .

A velocity increment of 5 m/s is chosen to obtain
the velocity spectra. Gate increment is 4 ms and gate
length is 44 ms. Figure 1-B presents contour plots for
six attributes, four of which ( semblance, ENCCS, SNR
obtained from semblance, and CM from eigenvalues )
have already been discussed. The other two attributes
are the extension of CM to semblance and ENCCS and
will be discussed in the following sections. Partial
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stacking is used for CMg (eigenvalue related covariance
measure calculation), with 6 consecutive traces being
summed Into 1 to reduce fold from 48 to 8 during the
calculation of CMg,.
One observes from Figure 1-B the following:

a). semblance and ENCCS are virtually identical,

b). CM,, has more resolution than semblance as Key
and Smithson observed

¢c). SNR obtained from semblance has comparable
resolution to CMg,

d). All of the attributes show a ridge .

Figure 2-A has the same amount of noise as Figure 1-A
but has another event, at 2.012 s with velocity 2725
m/s. Since events are 12 ms apart they are barely
separated at small offsets, but indistinguishable at large
offsets. The same siX attributes are plotted in Figure 2-
B.

One can make the following additional observations on
this figure  al. Interaction of two events distorts the
nice ridge that one observes with one event

b). 1t is difficult from semblance contours to 3ssess
that there are two events

¢). SNR; calculated from semblance brings about
enough resolution to predict that there are at least two
events but event times and velocities are distorted. We
observe that CM,, is more resolved than SNRg and
vividly illustrates the temporal and velocity distortion
created due to lack of noise and the size of the time
window(44 ms). The two events appear to be pushing
each other. This is indeed due to the fact that as 44 ms
gate slide along time axis the side lobes of the 2.0 s
event that arrive earlier than 2.0 s and sidelobes of the
2.012 s event which arrive later than 2.012 s have
higher coherency values than when the gate center is
exactly in between the events(2.006 s). We will see
below that when data noise increases this distortion
disappears. We also observed that (not shown here) as
time gate lentgh decreases the distortion observed for
SNR = 1600 case gets less and less.

Figure 3-A contains the same single event of Figure
1-A but at SNRg=1.0. The same six attributes are
shown in Figure 3-B. One can observe the following
a). Semblance and ENCCS are about the same, ENCCS
being a little cleaner,
b). SNRg obtained from semblance is slightly more

resolved than semblance and ENCCS,

¢). CM obtained from eigenvalues has more resolution
than semblance, ENCCS, and SNR, obtained from
semblance,

d). The "Ridge” observed in Figure 1-B is now smaller
in temporal extent.

Figure 4-A is the two event record of Figure 2-A but at
SNR¢=1.0. It is not possible to tell visually that there
are two events. Figure 4-B presents the attributes.

We observe that

a). Although there is a saddle point in semblance it is
hard to detect it from the contour plot. ENCCS is similar
to semblance. Compared to a single event in Figure 3-B,
contours are more circular ( contours look more like
bull’s eye).

b). SNR obtained from semblance does not help
resolution.

c). Covariance measurée obtained from eigenvalues
show only one event. This is due to particular noise
distribution and the 44 ms long temporal gate. For
smaller time gates like 20 ms (not shown here) we were
able to resolve the two events.

SIGNAL TO NOISE RATIO VERSUS COVARIANCE
MEASURE

The simulation experiments performed (although not
shown here) which compare SNRg obtained from
eigenvalues to SNRg obtained from semblance show
that they are same after the correction done by Eg. 12
and 13. These experiments also show(not shown here)
that W factor has less resolution than SNR when signal
is good, but has more resolution than SNR; when
signal-to-noise ratio is poor. Also, in the latter case, the
results are erratic. It is already observed above ( Figure
1-B) that for high signal-to-noise ratio, the SNR;
obtained from semblance has a similar resolution to
CMg,. Therefore one might be inclined to use SNRe
obtained from semblance, and ignore W. The reason
why SNR (obtained from semblance) is so sharp for
good signal-to-noise ratio is the fact that as semblance
s in £q.3 approaches unity, we get
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SNRg=< (28}
[
where
p=1-s (19}

is a small number.

However, the comparison of SNRg obtained from
semblance to CMg, for various noise levels ( Figure 3-B,
4-B and 5-B ) show that when signal-to-noise ratio is
poor, CMg, is more resolved. Therefore the resolution
must be coming from W. However, it has been
observed that many highly resolved but inaccurate CMg,
spectra may result for small signal-to-noise ratio. This
is mostly due to exponent N, in Eq. 14 and using small
amounts of processing white noise(to be discussed

" later).

It is observed above (Figure 3-B and 4-B) that for poor
signal-to-noise ratio, SNRe obtained from semblance has
no improvement over semblance. This is not surprising
since SNR; given in Eq. 3 approaches semblance as
semblance goes to zero. However, raising SNR¢ or

semblance to a power would bring back the resolution

{ along with the danger of boosting bogus events). It will
be shown in a later section that weight W is doing
exactly that (raising semblance to a power) when SNR¢
is smaller than one.

COVARIANCE MEASURE FOR HIGH SNR AND
PROCESSING WHITE NOISE
It has been mentioned above that for a single event,
signal trajectory gives a covariance matrix which is made
of a constant:

L, Ldw woai

1
L M

5
Ly My Foreo wa 1

(20)

The rank of the matrix is one (it is singular}, and allits
eigenvalues except one are zero. Such a matrix may
create problems for some eigenvalue solvers.
Furthermore, geometric mean calculation gets into

trouble. To eliminate such problems, one can add a
small white noise into the main diagonal of the
covariance matrix:

@=G= 1l 1+el LI ] 1

x (21)

] ) “ ey

1, 1, 1,..., 1+

where € Is a small positive number. Then, the
eigenvalues of the matrix change from

No0%;0; 045 5 w0 122
to
N.o%(1l+e), €, &,..., € ; (23)
Then SNR given in Eq. 13 becomes
SNR, = —: . (24)
The arithmetical mean approaches to
a=a? (25)
and the geometrical mean approaches to
g=eoz (26)

therefore, the log-generalized likelihood ratio becomes

B 1
p = In( e) i (27)

Note that € can be viewed as the noise that is
contained in data for high signal-to-noise ratio case.
Comparing Eq. 18, 19, and 24 implies that € acts like y
= 1-semblance. Therefore, sensitivity of CM to € also
determines the sensitivity to random noise in data.
Since most sensitivity to ¢ is in Eq. 24 but not in Eq. 27
, this explains why SNRg term has the same resolution
with CM for high signal-to-noise ratio data.

The examples of CMg, given above are run with 0.1
percent white noise. By making white noise less, for
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-example 0.0001 percent, increases the resolution, yet
increases the erratic nature of the results for poor data

GENERALIZATION OF COVARIANCE MEASURE TO
ENCCS AND TO SEMBLANCE

Despite the stability obtained from the addition of
white noise to the main diagonal of the covariance
matrix, spurious peaks was obtained in CM,, when
signal to noise ratio was poor. The study of the
covariance matrices for such records revealed two facts
: a}-there are many negative elements in the covariance
matrix due to. random noise or incorrect scan velocity ,
b)-spurious peaks occur when there are very small
eigenvalues. Since, for trajectories aligning the signal
there should not be any negative element in the
covariance matrix, one might choose to Zzero the
negative elements before eigenvalue calculations (due
to one event assumption, this is not harmful}. Also, one
may limit the lowest value of the eigenvalues by an
amount controlled by white noise €. That is, any
eigenvalue which falls below

Matn=8 Apa (28)

is set to that value. The reason for this is that even for
pure noise, the minimum eigenvalue is equal to the
variance of the least noisy trace.

These two modifications resulted in significant
improvements (not shown here} in the CM runs, which
prompted the following question: what if we replaced
every off-diagonal element in the covariance matrix with
their mean value C and every element on the main
diagonal with their mean A. When this is done one
obtains :

aAcc...C

CAL : w s T

SICOA v = s € . (29)
ccc...A

A few calculations with such a matrix shows that the
eigenvalues of the matrix are

A = A-C+ N, C  Ay=hy=...=dy =AC
(30)

Note that noise variance given by Eq. 9 becomes ol=
A-C and signal variance given by Eq. 12 is ol =C,
and the SNR; given by Eq. 13 becomes

SNRg = Tog (31)

where ¢ is defined by Eq. 7. Therefore Eq.31 can be
used to define SNRg for ENCCS and is parallel to Eq. 3
used for semblance.

‘The arithmetical mean of the eigenvalues is A and the
geometrical mean of the eigenvalues are

2 (32)
go{ (a-0%* (a-c + N,O) )™

Therefore the ratio of the geometrical mean to the
arithmetical mean will be

a_ 1
rE T (33)
((1-a™* (1+(N-1)c) )

Noting that this ratio goes to infinity for good signal (
¢= 1) and goes to one when there is no signal (¢ = 0
), and the fact that this factor is needed for velocity
resolution for poor data, one can approximate it with
1/(1-¢) and therefore the log-generalized likelihood ratio
defined in Eq. 13 becomes

p=1n(§)=1n(_1_fc-) i (34)

Since semblance and ENCCS are very close to each
other, the log- generalized ratio corresponding to
semblance would be obtained from Eq. 34 by replacing
¢ with semblance s:

p=1n(—1-i—s) . (35)

Therefore, covariance measure can be defined for all
three cases, the one obtained from eigenvalues, the one
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obtained from ENCCS, and the one obtained from
semblance as

CM=(attrib)*® (SNRg P (p)? . (36)

Here, SNR; is defined by Eq. 3 for

semblance , Eq. 24 for ENCCS, and Eq. 13 for
eigenvalues. Rho in this expression is defined by Eq. 35
for semblance , Eq 34 for ENCCS and Eq. 15,16,17 for
the eigenvalue technique. Variable "Attrib" is either
samblance (s) or ENCCS (¢} or, in the case of the
eigenvalue technigue , is obtained from SNR; using

SNR
Attrib=——5_ . 37
5 1+5NR, (a7

Introduction of "Attrib™ into Eq. 36 allows one the
flexibility to use a raw attribute such as semblance by
setting powers of SNR and Rho to zero.

CM obtained from ENCCS { CM,,) is shown in Figures
1-B, 2-B, 3-B, 4-B along with CM obtained from
eigenvalues (CM,,). It is observed that CM, is more
stable than CM,, at all noise levels. It can also be
observed that CM obtained from semblance { CM,,, ) is
almost identical to CM... Since semblance is
inexpensive to calculate this gives us a tool as powerful
as covariance measure with much less cost.

CONCLUSION

The SNR; obtained from semblance has similar
resolution to S/N defined by Key and Smithson for good
data. For poor data, resolution of the covariance
measure is better than that of SNR and comes from the
weight factor. These observations and theoretical
considerations given in the text lead to the generalization
of the covariance measure concept to semblance as well
as to energy normalized cross correlation sum.
Covariance measures obtained from semblance and
ENCCS have the same resolution with the covariance
measure obtained from the eigenvalues, at all noise
levels of the data. The CM originating from semblance
is more robust and much cheaper to calculate than the
CM originating from the eigenvalues.

Regardless of the origin of calculation, covariance!
measure lacks accuracy in both velocity and time, !
despite its sharp response for nois¢ free case. Thisi

inaccuracy is dependent on the gate length, the duration
of the wavelet residing on the events, the amount of
random noise present on the data and the amount of
white noise added to the main diagonal of the
covariance matrix. The lesser the amount of random
noise in data, the bigger the errors. This behavior is the
result of using gates and is common to all gated velocity
analysis techniques.
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