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SUMMARY

Traditional velocity analysis techniques use time
gates and attrilutes such as semblance to detect event
velocity and zero offset time. The use of a recent
attribute, covariance measure which is defined through
the use of the eigenwalues of the covariance matrix,
increases the resolution in time and velocity. Each
element in the covariance matrix is the zero lag of
the cross correlation between two gates belonging to
a trace pair and therefore (M is related to energy
normalized cross correlation sum. A covariance
measure can be defined from energy normalized cross
correlation sum. Since semblance and energy
normalized cross correlation sum are related, a
covariance measure can also be defined from semblance
and is the most economical of the three methods.

INTRODUCTTION

Semblance, unnormalized cross correlation sum,
statistically normalized cross correlation sum,
energy normalized cross correlation sum (ENCCS) and
same other attributes such as mean amplitude have been
used (Neidell and Taner, 1971) as attributes.
Recently, new techniques which increase the resolution
of the attributes have emerged (Sguazzero et al., 1987,
Key et al,1987, Biondi and Kostov,1988, and Key and
Smithson, 1990). Key and Smithson(1990) used
covariance measure (M) as the attribute. Their
assessment that M has better resolution than
semblance has prompted this study.

REVIEW

Semblance

Attribute semblance is well known (Neidell and Taner,
1971). 'The signal to noise variance ratio (or, the
signal to noise energy ratio) can be cbtained from
semblance s through SNR; = s/(1-s).The square root of
SNR, is the signal to noise RS amplitude ratio (
SNR, ) -

Enerqy normalized cross correlation sum

Energy normalized cross correlation sum (ENCCS or
simply ¢) defined by Neidell and Taner (1971) can be
interpreted as the ratio of the mean (C) of the off-
diagonal elements in the “covariance matrix" defined
by Key and Smithson(1990) to the mean (A) of the
elements of the main diagonal:

c= (1)

b9 o)

Covarjance Measure
Key and Smithson (1990) have introduced covariance
measure, (M. The definition of M is

2
M5 = (s/m p™ 2

Here S/N is the signal to noise variance ratio defined
fram the eigenvalues ( and is cbserved through tests
to be equal to SNR; defined from semblance, aside from
a factor which is equal to N,, the fold of the CDP),
and rho is a factor related to the inequality of the

eigenvalues. Rho is defined as the natural logarithm
of the ratio of the arithmetical mean (a) to the
gecmetrical mean (g) of the eigenvalues:

-1n(2) ()
p=1n(2

Their basic assumption is that there is only one event
per scan (one event per data matrix). Even if there
are many events, at the velocity of one of the events,
all cothers are incorrectly moved-out and appear as
noise. Therefore for the correct velocity there is
alvays ocne major eigenvalue. This fact is the backbone
of (M and is the reason for the second factor in it.
Key and Smithson use a partial stacking scheme and so
reduce the fold of the CDP (the power of rho) by same
factor, for example 6. Note that a large power (like
48) in M would give serious mmerical problems, if
the partial stacking route is not chosen. Similarly,
the geametrical mean of 48 mumbers is likely to give
mmerical problems.

GENERALIZATION OF OOVARIANCE MEASURE TO ENCCS AND TO
SEMBLANCE

For the pure signal case the covariance matrix is
a singular matrix and M calculations may get into
trouble. The stability of eigenvalue solution can be
cbtained by adding white noise to the main diagonal of
the covariance matrix. Spurious peaks were obtained
even after this for data with poor signal to noise
ratio. The study of the covariance matrices for such
records revealed two facts : a)-there are many
negative elements in the covariance matrix due to
either random noise or incorrect scan velocity , b)-
spurious peaks occur when there are very small
eigernvalues. Since, for trajectories aligning the
signal there should not be any negative element in the
covariance matrix, one might choose to zero the
negative elements before eigervalue calculations (due
to one event assumption, this is not harmful). Also,
one may set a lower bound for the eigenvalues. These
two modifications resulted in significant improvements
in the (M runs, which prompted the following question:
what if we replaced every off-diagonal element in the
covariance matrix with their mean(C) and every
diagonal element with their mean(A). In this case the
eigenvalues of the matrix are

A= =hy = a-c . 4D

Ay = A-C+ N, C,

Note that noise variance onz defined
covariance measure method { Smithson and Kezy, 1990)
becames equal to A-C and signal variance o) becomes
equal to €, and therefore S/N becames

c

S/N= —1—_—0- (5)

where c=A/C is the ENCCS. This eguation has the same
form as the equation used to define fram
semblance. The arithmetical mean of the eigenvalues
is equal to A and the geametrical mean is egual to
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2
( (4-0) " (a-C + N,0) )N,‘ (6)

Therefore the ratio of the geametrical mean to the
arithmetical mean is
1

(7)

nzl"'

((1-a)™* (1+(N-1)c) )

This ratio goes to infinity for good signal (c= 1),
and goes to one when there is no signal (¢ = 0), and
is mostly needed for velocity resolution for poor
data. Second factor in Eq.7 does not exhibit much
sensitivity to ¢ (due to root N,) and can be dropped.
Then, Eq. 7 could be approximated with 1/(1-c)
for the range 0<c<l. And rho becomes
1

p~ln(—1—:z)

(8)
Note that rho goes to c as ¢ goes to zero, therefore
taking its N,th power during CM calculation brings high
sensitivity to ¢ for noisy data.

Since semblance and ENCCS are very close to each
other, rho corresponding to semblance could be
abtained fram here by replacing ¢ with semblance s:

1

p~1n(TS) (9)

Indeed there is no reason to insist on N, as the power
in M. A small mumber like 8 might be encugh to
replace N,. A simpler form of (M would be

M= (S/N) p® (10)

It can be used for all three methods, eigenvalue
technique, ENCCS and semblance.

Figure 1 is a single event with virtually no noise (
SNR, =1600 in 44 ms gate around the main peak, time 2
sec, velocity 2700 m/s far offset 1400 meters, 48 fold
CDP, signal and noise band pass are 10, 60 Hz, time
gate size in the velocity analysis is 44 ms). Figure
2 conpares following attributes: semblance, ENOCS, SNR,
obtained from semblance, three different M values
cbtained from eigenvalues, ENCCS and semblance.
Partial stacking is used in the eigenvalue technique
to reduce the dimension of the matrix from 48 to 8.
In ENOCS and semblance runs 48 traces are used to
calculate the semblance and ENCCS, yet mumber 8 is
used as power of rho instead of 48.

Note the immediate gain in velocity resolution by
going from semblance to SNR.. Note also the large
temporal extend of the event in semblance and ENCCS
which is due to 44 ms gate length. Slightly larger
tenporalexterﬂofc{eigcmparedtoomer%isdue
to 0.1 percent white noise added to the covariance
matrix, before eigenvalues are calculated, and can be
made smaller by using a smaller value for the white
noise.

Figure 3 is the same single event with same band
limited noise ( SNR=1 in 44 ms gate). Figure 4

compares the various attributes ran on Figure 3. Note
the squareness of the semblance and ENCCS contours.
This is due to noise and 44 ms time gate. Also note
that SNR and semblance are now almost the same
resolution. This is due to noise. However, using any
of the (M measures increases resolution because of
rho factor ( power used is 8 ).

CONCLUSIONS

For high SNR, high velocity resolution in ™ is
mainly due to SNR term but not due to the use of
eigenvalues per se. For low SNR, the resolution comes
from the factor containing rho. Due to M's
relationship to crosscorrelations, a theoretical M
can be obtained from ENCCS without solving for the
eigenvalues. Since ENCOCS and semblance measure very
much the same quantity, M can be calculated from the
semblance as well by replacing ENCCS with senmblance,
allowing us to generalize the covariance measure
function to semblance as well as ENCCS. Obviously,
semblance is the most economical. Both ENCCS and
senblance calculate signal and noise energy at each
scan. As long as we assume that there is one event at
each trajectory and devise our formula accordingly
there is no extra benefit derived from eigenvalue
technique.
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A single event with a very small amount of noise;
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A single event with moderate amounts of noise; £;=2.000 s, v=2700 m/s , SNR
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