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SUMMARY 

The Tau-Q transform which is based 
on residual moveout and stack is a parallel 
process to the Tau-P transform which is 
based on linear moveout and stack. Both 
of these processes can be implemented in 
the f-x domain. In this domain, residual 
moveout involves complex exponentials with 
arguments which are quadratic in offset 
while linear moveout involves arguments 
which are linear in offset. When the 
coefficients of the transforms at each 
frequency are obtained through least 
squares error constraint rather than 
through straight sums in the frequency 
domain, a best fit is obtained to the dips 
or the parabolic residual moveouts that are 
assumed to exist in data. I will use the 
terms “F-x Domain Least Squares Tau-Q” or 
“Radon Tau-Q” for one and “F-x Domain Least 
Squares Tau-P” or “Radon Tau-P” for the 
other. 
The resolutions of the Radon Tau-P and the 
Radon Tau-Q are better than those of the 
classical Tau-P and the classical Tau-Q 
only when the problem at hand allows the 
amount of white noise used in the Wiener- 
Levinson Inversion to be small. The side 
lobes of the classical residual normal 
moveout and stack are related to the 
Fresnel Integrals and are significant in 
magnitude. The least squares error nature 
of the Radon Tau-Q suppresses these side 
lobes significantly. Therefore, the Radon 
Tau-Q gathers are cleaner than those of the 
classical Tau-Q. 

INTRODUCTION 

The classical Tau-P method is well 
established (Phinney et a1.(1981), 
Tatham(1984) ). In simple terms, it is 
linear moveout followed by stack (slant 
stack). A convolutional operator known as 
the “Rho filter” which is equivalent to a 
linear ramp in the frequency domain 
balances the spectrum of the forward 
transform. A common application of Tau-P 
transform is to decompose seismic data into 
various dip components. 

Thornson(l984) imposed the least 
squares error constraint on the 
reconstructed data and developed “Slant 
Stack Stochastic Inversion”. He also 
generalieed stacking velocity decomposition 
into “Velocity Stack Stochastic 
Inversion”. Bampson(l986) was able to 
implement Thornson’s method efficiently by 
using NM0 corrected data, the parabolic 
approximation to residual moveout and the 
E-x domain. Hampson’s technique imposes 

the least squares error constraint on the 
model constructed for the data once for 
each frequency. Hampson(1987) identified 
his approach as the Discrete Radon 
Transform which is explored by Beyklin 
(1987). In what I call the "Radon Tau-P", 
I use parameter “p” for linear moveout and 
refer to Hampson’s method as the “Radon Tau- 
Q” where q is the parameter for residual 
(parabolic) moveout: 

t- tau tp*x (Eq. 1) 
(linear move-out) 

t= tau tq*x*x (Eq. 2) 
(residual move-out) 

In the Radon Tau-P method I find 
slant stack inverse in the f-x domain as in 
Hampson’s method. The base functions in 
this approach become ej w.e.x in stead of 
ej tV.q.x.x, Because of its least square 
nature I will often refer to this technique 
as the “F-x domain least squares Tau-P”. _ 

THE SLANT STACK IN THE F-X DOMAIN 

time domain implementations of the 
Tau-p transform require interpolating data 
from discrete time samples to the time
values implied by Eq. 1. In the forward 
transform, we are in effect applying linear 
moveout by the amount -p.x and summing the 
results and dividing by number of elements 
in the sum. Since a static shift is a 
linear phase addition to the data in the 
frequency domain, the frequency response of 
Iau-F trace at angular frequency w will be 

1 Nx 
g(w,p)= --- I: D(W,Xk) . e-j w.p.xk 

Nx k=l 
(Eq. 3) 

where Nx is the number traces in the data, 
Xk are the offsets, and D(W,Xk) is the 
Fourier transform of kth trace at angular 
frequency w. The inverse Fourier transform 
of g(w,p) is the slant stack trace or Tau-P 
trace. 
The resolution of the Tau-P process can be 
studied as a function of frequency if we 
use a flat event at time t0 : 

g(w,p)=ej w.to . a(w,p) 

#here 

( Eq. 4) 

1 Nx 
a(w,p) = --- E e-j W.P.Xk 

Nx k=l ( Eq. 5) 
;f the trace distance increment is constant 
Ind is dx, then one can show that the 
ragnitude of this function is given by 
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’ sin(Nx.w.s/Z) 1 
1 g(w,p) ; = _I_________________ 

Nx. 1 sin (w.s/2) 

( Eq. 6) 
where s=p.dx is the slope (dip) per trace. 

The function given in Eq. 6 occurs in many 
branches of science. For example, the 
magnitude of diffracted light from a 
grating of Nx elements with element width 
dx is given by the same formula where s is 
a parameter related to the angle measured 
from the direction of the incident light 
beam. If viewed as a function s, this 
function determines the resolution of the 
process. To find the half power point of 
the response involves trigonometric 
equations. Instead, the first eero crossing 
value given by 

1 
Nx. so = ______--- 

frequency 
(Eq. 7) 

can be used. Note that Nx.s is the moveout 
at far offset. 
The plot of Eq. 6 as a function of Nx.s at 
15 Hz is given in Figure 1. Nx.s0=66 ms 
is where the first zero crossing occurs. 
Two events with “s” value difference ( say 
dip difference ) less than so are 
considered to be unresolvable. This is 
known as “The Rayleigh’s Criterion” in 
Optics (Born and-Wolf ,198O). 

THE F-X DOMAIN LEAST SQUARES TAU-P 
(THE RADON TAU-P) 

When Hampson’s (1986) approach is used for 
Tau-P, a system of normal equations is 
obtained at each frequency for N unknown 
coefficients f(pi) i=l,,..,N, 

N 
E R( W,PI,P~ ).f(pj) = g(w,pi) 
j=l 

( Eq. 8a) 
where N is the number of dips the data are 
assumed to contain. 
I make the observation that the right hand 
side of Eq. 8a is the classical Tau-p 
response at angular frequency w. The R 
matrix on the left hand is independent of 
the data, and serves as a denominator in a 
sense: 

f. = R-1 . g_ (Eq. 8b) 

The role of R-1 is to sharpen the classical 
Tau-P response. 

When the dip increment at a particular 
angular frequency is chosen to be 
constant, then the matrix becomes 
Hermitian Toeplits with main diagonal all 
ones and nth lower diagonal given by 

1 Nx 
Rn =---- C e-j n.w.dp.rk 

Nx k=l ( Eq. 9) 

and the linear system of equations given in 
Eq. 8a can be efficiently solved (Kostov, 
1989). 
Important observations are: 
a). Rn diminishes in magnitude as offset 
range=Nx*dx goes to infinity. Then, the R 
matrix reduces to a unit matrix. That is, 
the infinite aperture limit of the Radon 
Tau-P is equivalent to the classical Tau-P, 
b). Rn array is the same with the p array 
of the flat event given by Eq. 5. 
Therefore Eq.8b has to return a perfect 
solution ( a spike) for the c array. That 
is, the Radon Tau-P can produce the ideal 
solution, “infinite aperture solution”, 
from finite apertures if the matrix to be 
inverted is not singular. 

EFFECTS OF WHITE NOISE ON THE RADON TAU-P 

Various conditions cause the R 
matrix to be singular ( Kostov, 1989 ). An 
obvious one is at zero Hz. In this case 
the matrix becomes all ones and is 
impossible to invert, To decrease the 
arithmetic problems caused by such 
singularities, it is common to add some 
white noise to the main diagonal of the R 
matrix, changing it from Ro=l to Ro=ltn 
where n is a small positive value. 
To eliminate the amplitude loss this 
modification will cause on the solution 
array f, I multiply the right hand side of 
Eq. 8a with ltn. With this scheme I obtain 
an algorithm which gives & = g as n goes 
to infinity. Therefore the Radon Tau-P 
reduces to the classical Tau-P as the added 
white noise goes to infinity. 

When the matrix is not singular and the 
white noise can be chosen to be small, then 
this is the best solution (in the least 
square sense) that can be constructed from 
the assumed dips. 

To understand the effect of white noise on 
the Radon Tau-P( or Tau-Q ) solution I use 
the same record that contains a flat event 
and model it in terms of two dips: one is 
the correct dip ( dipl=O ) the other one is 
an incorrect one ( dipa=s ). The normal 
equations become 

: l+n a* I. I fl I=ej u.t*.(ltn)[ 1; 
I a ltn 1 I f2 I I al 

where a is given by Eq. 5 and a* is its 
complex conjugate. 

The determinant of the matrix is 
D=( l+n).(l+n) - a*.a 

and the analytical solution for the Radon 
Tau-P can be shown to be 

fi = $ :.:~.~::;;a~.~ j.(Dltn)/D 
fa q  . . . * 

I make three observations’ from this simple 
case: 

a). As the white noise parameter goes 
to infinity, I obtain the expected 
classical Tau-P solution 

(fl#fZ) = ej weto .(l,a ). 
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b). As the white noise parameter goes 
to zero, I obtain the ideal solution 

(fl,f2) q  ej w.to .(l,O ). 
For N dips we would get 

(fl,f2 ,..,fN) = ej w’to (I,O,O,...,O). 
That is, no energy leaks from the correct 
dip (dip=O) to the incorrect ones when a 
zero value can be used for the white noise 
parameter. 
Figure 2 illustrates this point using a 
moderate ( 1% ) and a small ( 0.01% ) white 
noise value. Note the resolution increase 
in both cases. However, when the matrix is 
singular which happens often in practice, 
any moderate noise used makes the Radon Tau- 
P results almost identical to the Classical 
Tau-P. 

c). At zero Hz, a*.a =1 , and I obtain 
fl = f2 q  ej w-tO.( (l+n)/(2+nl ). 

It can be shown that at iero.BE, fbr.N dips 
we get 

fl=fl=...=fN= ej w.to.( (l+n)/(N+n). 
This means that it is not possible to 
determine to what dip DC energy belongs and 
therefore the Radon Tau-P distributes that 
energy equally between all dips. 

It can also be shown that as the number of 
dips used to model the input data goes to 
infinity, the spectrum of the zero dip 
trace becomes a line that passes through 0 
at aero Hz and 1 at Nyquist frequency 
implying that infinite dip limit of Radon 
Tau-P is the Rho filtered Tau-P. 

THE RESIDUAL MOVEOUT AND STACK IN THE F-X 
DOMAIN 

The residual moveout after NMO, followed 
by stack can be done through the f-x 
domain parallel to Eq.3: 

1 Nx 
g(w,q)=-- X D(W,Xk). e-j w-q.xkxk 

Nx k=l 
(Eq. 10) 

where D(w,xk) represent the Fourier 
transform of the NM0 applied data at offset 
xk. The inverse Fourier transform of g(w,q) 
is the RNMOtstack trace to which I will 
refer as the Tau-Q trace. 

The resolution of the Tau-Q trace can be 
studied as a function of frequency or 
moveout if we apply it to the same flat 
event used above ( q=O event ). Then 

g(w,q)=ej w-to . b(w,q) 
( Eq.11) 

1 Ix 
b(w,q) = --- e-j *.q.=kxk 

Nx Z=l 
( Eq.12) 

This sum behaves like the Fresnel 
Integrals 

J 
V V 

cos ( x.U2/2) dtl and I sin( x.Us/S)du 
0 0 

which are used in Optics for the 

diffraction of light from a straight 
edge( Born & Wolf, 1980). In our problem, 
we get 

V = (NH-l).dU 
du = ( Z.f.q.dx.dx)l/z 

and NH=Nx for offend shooting and NH=Nx/2 
for split spread. Since Fresnel integrals 
oscillate around the limit value of 0.5 as 
V goes to infinity I find that the sum in 
Eq. 12 has a frequency and moveout 
dependent limit: 

1 1 
____________________ : _____-_________ 

Nx.dx. ( f. q )1/z ( f * dT )I/2 
where dT is the residual moveout at far 
offset: dT q  q . (Nx.dx). (Nx.dx). 
The plot of Eq. 12 at 15 Hz and as a 
function of dT is shown in Figure 3. Note 
the significant side lobes in the figure. 
Only at high frequencies or at 
significantly different moveouts than where 
the event is, or for large offset ranges 
(large spatial apertures), the bias in the 
oscillation point will be small. 
Otherwise, the classical Tau-Q will have 
significant side lobes explaining why a 
single event shows up at many velocity 
panels in standard CVS panels. 

THE F-X DOMAIN LEAST SQUARES TAU-Q 
(THE RADON TAU-Q) 

When the least squares error constraint is 
imposed on the problem, we obtain Radon Tau- 
9. When the q increment is kept constant, 
we obtain a set of normal equations with 
Hermitian Toeplite form as before with the 
only difference that parameter q takes the 
place of the parameter p and x.x takes the 
place of x. Similar arguments lead to the 
cone 1 usi ons 

a. The large aperture limit of the 
Radon Tau-Q is the-classical Tau-Q. 

b. The high white noise limit of the 
Radon Tau-Q is the Classical Tau-Q. 

c. The energy at zero He is equally 
shared between all curvatures and 
therefore that value goes to zero as the 
number of parabolae used in the model goes 
to infinity. 

Figure 4 compares the Radon Tau-Q to the 
Classical Tau-Q using a moderate ( 1% ) and 
a small ( 0.01% 1 white noise value. Note 
the resolution increase and the side lobe 
suppression in both cases. When the matrix 
is singular which happens often in 
practice, a moderate noise value needs to 
be used. I observe that even in singularity 
case the side lobe suppression takes place 
in Radon Tau-Q, even though the resolution 
is no different than the classical Tau-Q. 

CONCLUSIONS 

The least squares Tau-P and the least 
squares Tau-Q can be implemented in the f-x 
domain parallel to each other. The 
infinite aperture or infinite white noise 
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limit of both processes are their classical 
counterparts,i.e., the slant stack, and the 
residual moveout 6 stack. When the 
matrices to be inverted are non-singular, 
both methods eliminate the smearing effect 
that finite apertures cause, giving highly 
resolved (infinite aperture type) results. 
When matrices are singular, which happens 
often in practice, the Radon Tau-P gives 
results almost identical to the classical 
Tau-P. On the other hand, the Radon Tau-Q 
with moderate noise suppresses side lobes 
even in singularity cases, yet with no 
improvement in the resolution. 
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FIGURE 1. Classical TAU-P (Magnitude) 
as a func.of linmoveout at far offset 
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FIGURE 2. RADON TAU- P Response 
Magni. vs. Lin. moveout at far offset 
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FIGURE 3. Classical TAU-Q (Magnitude) 
as a func. of res. moveout at far offset 
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FIGURE 4. RADON TAU- Q Response 
Magni. vs. Res. moveout at far offset 
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