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Data processing 

Refraction statics are normally run on all lines in a survey, and 
brute stacks with refraction statics are checked for line ties, If 
refraction statics did their job, all lines will tie properly. Velocity 
analyses should be run after refraction statics corrections. NM0 
corrections are then applied to the data, followed by surface-con- 
sistent statics, NM0 refinements, residual statics, and CDP 
stack. Velocity analyses run after refraction statics will be more 
consistent throughout an area than previous analyses. This im- 
provement is expected because near-surface anomalies affect ap- 
parent structure and stacking velocity. 

Data examples 

Figure 3a shows a line crossing the South Timbalier trench, 
south of Louisiana. It is part of a 27-line grid positioned directly 
over the trench. Seismic data from this area are generally poor 
because fill material absorbs much of the energy needed for good 
reflections, and velocities in the fill are low compared to sur- 
rounding material, causing time delays in transmitted and re- 
flected raypaths. The first problem can be alleviated by using 
large air gun arrays, high air pressure, and recording with a drag 
cable. The second problem must be treated as a long period 
static. 

Figure 3b shows the same line processed with refraction stat- 
ics. Referring back to the statics profile on Figure 2, one can see 
that the maximum applied static was - 250 ms. Note the im- 
proved continuity below the trench. Anomalous “breaks” have 
been removed, and even the deep data look better. Figure:la is 
from a line in the South Pass area, offshore Louisiana. Variable 
accumulations of mud and gas on the sea bottom cause stacked 
sections to have areas with little or no interpretable data. Figure 
4b shows the same line with refraction statics processing. There 
is a dramatic improvement on the left side between 1.0 and 2.5 
s, and structure conforms to known geology in the area. 

Conclusions 

Refraction statics properly solved the static problems shown by 
the IWO examples in this paper, and helped produce reliable sec- 
tions showing correct structure. In the first example, refraction 
statics solved a long period problem with a magnitude much 
larger than reflection techniques alone could handle. In the sec- 
ond example, statics in an area with little usable reflection energy 
were solved and data were stacked successfully. 
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FXDECON and Complex Wiener 
Prediction Filter 

POS 2.10 

Here U, is the first sample of the input and represents the kduc- 
ible part of input. The time series fi fz fM is called the 
prediction operator and (1, -fi, -fi, . . -fnr) is called the 
prediction error operator (Robinson and Treitel, ‘1980). In terms 
of z-tra&oms, predictability by a one-step-ahead prediction fil- 
ter means that there must exist a non zero filter F(z) such that 
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The complex one-stepahead prediction filter for use in reduc- 
ing random noise in stacked seismic data was demonstrated by 
Canales (1984). The examples shown by Canales demonstrated 
results equivalent to poststack coherency filtering in improve- 
ment, but possibly without the usual ill effects such as loss of 
frequency content, lateral mixing, smearing across faults, etc. 
Implementation of the method described by Canales was vague 

where U(Z) is the z transform of the input and ui is the first term 
of the input, That is, the prediction error filter 1 - zF(r) reduces 
the input to its first sample in a similar fashion as spike decon, 
and the prediction filter F(z) produces a one sample advanced 
version of input U(z): 

F(z) U(z) = z-l [U(z) - 41. 

until incorporating information from an article by Treitel (1974) 
describing the complex Wiener filter. The combination of Can- 
aIes’ idea and Treitel’s theory produced the implementation of 
f-x decon described in this paper. FXDECON described herein 
was tested on synthetic data for algorithm validity and then ap- 
plied to real seismic data. It proved effective in removing spu- 
rious data, ground roll, random noise and even diffractions from 
stacked data. There are two outputs from the process: a “signal” 
section with the noise removed, and a “noise” section which 
shows exactly what was removed. If the noise section and the 
signal section are recombined, the result is the input section. The 
main points in the implementation will be tied to Treitel’s theory 
and a limiting case presented. Real data cases will also be pre- 
sented. 

f-x domain 

A group of traces can be considered to represent a physical 
phenomenon in the r-x domain, where t is the time and x is the 
horizontal distance (offset) of each trace from the first one. When 
the Fourier transform of each trace is done, the resultant complex 
values are said to represent thefiY domain, That is, now there is 
a value at each frequency f and offset X. 

Predictability 

A tutorial review of linear prediction was given by Makhoul 
(1975). Here it suffices to say that linear predictability by a one- 
step-ahead prediction filter means that for a given input of length 
N: 

there must exist a filter of length M 

fi f2.h. .fM. 

in such a way that any value of the input can be expressed in 
terms of its past M values 

uk+1 = hut + fi uk-1 + . + f&k-M+I. 

That is, there must exist a convolutional operatorf, in such a way 
that 

where ulfl is a one sample advanced version of u, and (*) indi- 
cates convolution. In other words, there must exist a filter in such 
a way that, 

(1, -fi, -fi . ., -fM) * (4 4. hf) 

= (UI, 0, 0, . ,, 0). 
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Where 2.l$x2h’, real matrix M is given in terms of real part P 
and imaginary part Q of Hermitian matrix & as 
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M= P-Q 
-[ I Q P 

A technique such as Gauss-Jordan method could be used to solve 
these real equations for 2Nf unknowns x, and yP 

Complex Wiener filter as deconvolution operator inf-x 
domain 

The f-n domain is described above and the complex Wiener 
filter for a given complex time series is summarized. For a given 
frequency f, thef-x response in x direction becomes input to the 
complex Wiener filter. The main question is how to choose the 
desired output. We know that for a one-step-ahead prediction op- 
erator it must be a one sample advanced version of the input. 
That is, if the input is 

xl x2 x3 . -t-N,, 

then the desired output must be 

x2x3x4. . .x.&r,, 0 , . . 0, 

123.. . N,-1 N,. .Nd. 

One of the main criteria in any processing is that the process does 
not harm the data if the data do not have what the process is 
looking for. For example, if the data have no statics, a statics 
program should find no statics. In our case the main criteria 
should be that if the data has no noise FXDECON should find no 
noise. The above desired output is found to create noise for pure 
signal unless output energy is piecewise normalized to the energy 
level of the input. The permanent cure to this problem is to keep 
an extra trace xN, + 1, and use 

x* xj x,, % + 1 0, 0, 

1 2 N, - 1 N, . N‘,, 

as desired output. 

RANDOM NOISE REDUCED STACK 

RANDOM NOISE 

FIG. 2. Input and signal, noise outputs of FXDECON. 

Data examples 

Two examples of FXDECON are presented here. Figure 1 
shows an input and two outputs from FXDECON. The main out- 
put is the signal output and the auxiliary output is the noise out- 
put. That is, signal plus noise sums to input for every time sam- 
ple. Shallow and deep noise content show that the method works 
well in removing random noise. Comparison of signal to input 
shows that event continuity is enhanced without damaging the 

waveforms. Figure 2 shows a close up view from a different line. 
Again, significant noise is found and removed by FXDECON. 
Coherency and detail obtained after noise removal could be stra- 
tigraphically important. 
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FIG. 1. Input, signal output, and noise output to FXDECON. 


