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FIG. 1. A forward and reversed ray trace through a model 
of a graben filled with sediment. 

but they serve to demonstrate the downward continuation 
method It would be difficult to interpret the first arrivals on these 
seismograms because of the shadow zones and superimposed ar- 
rivals. Downward continuation can help solve this problem. 

The numerical downward continuation is done for the forward 
and reversed data by a summation method. The wave field at 
each point in space is constructed by summing traces recorded 
by geophones within a chosen aperture. Each trace in the sum is 
shifted by the delay time between the geophone and the spatial 
point. The sum of the traces is then phase shifted by 45 degrees. 
Figure 3 is the image that comes from taking products of the 
forward and reversed fields in the manner described above. The 
“first break” in depth gives a good delineation of the boundary. 
The downward continuation resulted in a simplification of the 
interpretation of the first arrivals for this synthetic example. The 
diffractions in the image are a consequence of the ray trace syn- 
thetic and spatial truncation of the data. When an interface has 
very high relief, the shortest traveltime path may differ signifi- 
cantly from a path along the interface. This difference causes 
some error in tbe method (Rockwell, 1967). 

The method could be practical for interpreting real data, espe- 
cially in areas where shadow zones and diffractions make cycle 
skipping difficult to avoid. The images formed from different 
pairs of forward and reversed gathers could be stacked. In many 
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FIG. 2. Ray trace synthetic seismograms for forward and re- 
versed directions. There are shadow zones and superim- 
posed arrivals. 

FIG. 3. Image of refracting interface obtained by downward 
continuation of refracted arrivals of forward and reversed 
gathers. 

locations, the success of the method probably will depend on 
incorporating a technique for overcoming residual statics caused 
by local delays associated with shot and receiver positions. 

This paper has considered only a two-layer case. Simple mod- 
els such as these are adequate in many locations and are often 
used when interpreting refraction arrivals (Jones and Jovanovich, 
1985). No assumption was made about the refractor velocity v2. 
The downward continuation used only the overburden velocity 
v,, When several layers exist, the present method might be ex- 
tended, as has been done with the graphical methods. Appar- 
ently, we could only delineate one interface at a time using the 
reciprocal time appropriate for the refraction from the interface 
being considered. 
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Whether it is a refraction or reflection statics problem, one 
always encounters the problem of decomposing matrices into cer- 
tain components of which the matrix is a sum. Gauss-Seidal al- 
gorithm is one such algorithm which decomposes matrices into 
certain components (shot term, receiver term, structure term, and 
offset term). Here we offer a different method, the diminishing 
residual matrix method (DRM) for cases where the static matrix 
is assumed to be the sum of the two terms only (shot and receiver 
terms). 

In refraction statics, the matrix to be decomposed is the linear 
moved out first break arrival times, i.e., total delay times are the 
instantaneous intercept times. The problem then is to decompose 
total delay times surface consistently into shot and receiver delay 
times. We applied the DRM method to this problem and were 
quite successful. Indeed, experience with the application of DRM 
to refraction statics has shown that not only can we solve for high 
frequency statics, but also for very long wavelengths compared 
to spread length. 

By explaining the method in simple terms, we will try to show 
here why it works. 
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Introduction 

Most recent reflection static programs try to decompose a T, 
matrix: 

T, = Sj + Ri + Gk + Xk 
i-tj k=- 

2 ’ 

into its shot (S,), receiver (RJ, structure (Gk), and offset (X,) 
components (Taner et al., 1971; Wiggins et al., 1976). If one 
can assume that offset dependence is negligible and net CDP 
shifts are products of coinciding and large shot-receiver profiles 
above those CDPs, then T, measurements can be averaged over 
a CDP or a number of CDPs and by subtracting this average 
value at the CDP for all elements of T, at that CDP one gets: 

T, = S, + Ri, 

where T, are total residual times (no structure involved unless 
smoothing kept too long). One comes to the same conclusion if 
one uses a pilot trace for a CDP (designed at or around that CDP, 
yet centered at that CDP) and obtains residual times Tii by cor- 
relating components of the CDP to this pilot (Hileman et al., 
1968). Therefore, the problem here, given T, matrix, is to find 
shot array Sj and receiver array Ri. 

Similarly, in refraction statics traveltime T’, from shot j and 
receiver i reduces to total travel time T, after linear moveout at 
the refractor velocity: 

Tii = T’, - v 
(constant refractor velocity V) 

X- 
j-i 

(changing refractor T’=Tb-~~~~~vel~ityandj>i) 7 

when i > j, 

where X, is the distancehetween jth shot and ith receiver. We 
assume here that refractor velocity profile is known. 

Therefore, one is left with delay timematrix, T, to be decom- 
posed into shot delay Sj and receiver delay Ri 

T, = Sj + Ri. 

The problem then is to find a method to accomplish this. 
The Gauss-Seidal iterative solution is one such method (Wig- 

gins et al., 1976; Taner et al., 1974; Moser and Jovanovich, 
1984; Farrel and Euwema, 1984). However, the Gauss-Seidal 
method is not always convergent (Kellison, 1975) and to create 
a diagonal heavy matrix that insures convergence, one has to 
inject arbitrary unknowns similar to white noise in deconvolu- 
tion. 

Here, we describe a new method (DRM) accurately solves for 

T, = Sj + Ri 

even for long wavelengths equal to line length. During the expla- 
nation of the method, we also show that the DRM method is 
equivalent to the least-squares error method for square matrices. 

Diminishing residual matrices method (DRM) 

Let ?$, = T, be the original observation matrix that may 
have only some elements known. Define the residual matrix at 
k + lth iterations as: 

where 

ri.k = & . ,g CRij,k is the residual receiver 
I 

static at kth iteration; 

sj,k = $ * ,$, CRij,k is the residual shot 
J 

static at kth iteration, 

and FR is the fold for the ith receiver (number of shots contrib- 
uting to the calculation of ith receiver) and Fj’ is the fold for the 
jth shot (number of receivers contributing to the static calcula- 
tion). Then, the total ;tatic at ith receiTr and jth shot are 

ri = z, %k sj = z, sI.kP 

where N is the number of iterations. 

Example 3 X 3 Case: Solution with least-square difference con- 
straint 

[ 

31 + rl 2 

s1 + r2 

s1 + r3 

;;z; z;]=[;;; ;; z]. 

We have 9 equations and 6 unknowns. If one attempts to solve 
for the unknowns, one easily discovers that four of the equations 
are- redundant because of the following relationships: T,3 + r,, 
= T,, + T33; 2.23 + T3, = T,, + T33; Tu + T,z = z-*2 + T,,; 
T12 t T33 = TIs + T32. Therefore, we effectively have 5 equa- 
tions and 6 unknowns and those equations can be solved only in 
terms of one of the unknowns. By changing to dk = sk - rk 
(k = 1, 2, 3), the equations are solved in terms of d3: r, = T13 
- OST33 - OSd3; r2 = T23 - 0.5T33 - 0.5d3; r3 = OST33 - 
OSd3; d, = T3, - T,3 + d3; d2 = T3, - T23 + d3. 

The independent variable d3 can be obtained if one imposes 
minimum power condition; P = d12 + 4’ + d32, dpldd3 = 0. 
This yields d3 = ((T,, - T3,) t (T23 - T3,))/3. As an example, 
if we were given: 

8 16 21 
T = 13 21 26 , 

[ 1 18 26 31 

then the above equations would give d3 = 1, r1 = 5, r2 = 10, 

r3 = 15, d, = -2, d2 = 1, therefore s, = 3, s2 = 11, 
s3 = 16. 

3 x 3 Case: Solution with DRM method. 
Let us give the solution for the example above but using DRM: 

T = [;i 2% !i] = [;;;.] = [;;ii][;;;] = [:8_al. 

The expected static from the solution and residual matrix is 

8, = [ii;: it; ;:!].,T-%, 

-6.0 
= -3.5 

-1.0 

If one iterates one more: 

2.0 

0.5 
0.5 3.0 . 
3.0 5.5 I 
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and residual matrix at2 = 3, - ‘& 

1 .I)0 0.25 

0.25 

1.50 1 ( 
I .so 7.75 

1.00 0.25 

0.25 

1.50 

I 1.50 2.75 

Note that the expected matrix Ce2 as well as the residual matrix 
a, is half of what we started with: 

L L 

Therefore, the solution diminishes by ratio 2 as well. Full solu- 
tion then is: 

1.5 

[ 1 10.0 

[ 1 -1.25 (1 + ; t a t . .) 
+ 0 \ 

12.5 1.25 2 

= 

Note that this is the same result as obtained by the least-squares 
technique above. 

What makes the residual matrix diminish by the power of 2 is 
its properties: 

R,, t Rz2 + R33 = 0 Rx, + Rz2 t R,, = 0 

Rz, + R,, + R,, = 0 RP, + R,, t R,, = 0 

RIZ + R23 f R3, = 0 R3* t RS3 t R,, = 0. 

This also insures that each residual solution has a zero mean. 
We observed similar properties in large square matrices also. 

We can deduce from here that for square matrices (i.e., shots are 
done at every station and spread is as long as the line), the DRM 
method provides the identical results one would get from a least 
squares solution where the power in the difference profile 

P = (s, - rJ2 t (s2 - r2y t . . t (s, - r”y 

is minimized. 
Numerical tests with nonsquare matrices and matrices that do 

not have observation from some elements (line is much longer 
than the spread) gave results in agreement with both the least- 
squares and the Gauss-Seidal solution, as long as divisions are 
done by twice the fold for that element, rather than by just the 
fold. 

Since residual solutions diminish by a ratio approximately 
equal of 2 at each iteration, even the largest static case of refrac- 

tion statics can be solved in less than 10 iterations (2” = 1 024 
Ins). 
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The reflection seismic prospecting method has largely ignored 
refraction arrivals since evolution of the CDP stack and digital 
processing in the late 1950s and early 1960s. Over the past sev- 
eral years, however, there has been a resurgence of interest in 
refraction theory and analysis to facilitate near-surface traveltime 
corrections (statics) and improve the structural integrity of the 
stacked section with regard to long wavelength statics. A number 
of commercial programs now exist which routinely incorporate 
first-break traveltime information to provide a near-surface (one 
or two layer) model, which can be used for static correction to 
some reference datum surface. These programs exploit a variety 
of classical refraction methods, which when coupled with highly 
redundant refraction observations from conventional CDP cover- 
age, generally yield satisfactory results. 

This paper describes a new method for refraction analysis in 
which first-break observations are inverted to give a near-surface 
model by the generalized linear inversion (GLI) procedure. The 
GLI method has found numerous applications in geophysics and 
appears to be a powerful tool for refraction modeling when the 
near-surface layering is complex. The GLI method is outlined in 
the talk and illustrated with field examples comparing this new 
method with conventional refraction static solutions. 

Introduction 

The history of reflection seismic processing consists of a series 
of important breakthroughs and innovations which, at the time of 
their introduction, represented major advances in the state of the 
art, Most of these improvements in the reflection seismic method 
were the result of new concepts or ideas being put into practice 
(e.g., CDP stack, deconvolution, wave-equation migration, etc.). 
A few were the result of rediscovering or reengineering ideas and 
concepts that had been known for many years. Modem refraction 
statics fall into this category. 

Refraction theory and interpretation was a highly developed art 
when the reflection seismic method was invented in the late 
192Os, and many of the early seismic crews successfully em- 
ployed refraction methods to outline shallow Gulf Coast salt 
domes. The reflection method, with greater depth of penetration 
and resolution, quickly displaced refraction techniques as the pre- 
ferred seismic prospecting tool, although refraction theory and 
analysis still played an important role with regard to weathering 
corrections for reflection records. This situation prevailed until 
the early 1960s when digital seismic recording and processing 
were introduced. The digital revolution profoundly and irrevoca- 
bly changed the reflection seismic method. As digital processing 


